These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 31764552)
1. Nonmineralized and Mineralized Silk Fibroin/Gelatin Hybrid Scaffolds: Chacterization and Cytocompatibility In Vitro for Bone-Tissue Engineering. Meng X; Gong K; Sun C; Liu D; Du P; Xu D J Craniofac Surg; 2020; 31(2):416-419. PubMed ID: 31764552 [TBL] [Abstract][Full Text] [Related]
2. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering. Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379 [TBL] [Abstract][Full Text] [Related]
3. Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering. Qian J; Suo A; Jin X; Xu W; Xu M J Biomed Mater Res A; 2014 Sep; 102(9):2961-71. PubMed ID: 24123779 [TBL] [Abstract][Full Text] [Related]
4. Surface modification of Thai silk fibroin scaffolds with gelatin and chitooligosaccharide for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Wongputtaraksa T; Ratanavaraporn J; Pichyangkura R; Damrongsakkul S J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2307-15. PubMed ID: 23015285 [TBL] [Abstract][Full Text] [Related]
5. Pore size modulates in vitro osteogenesis of bone marrow mesenchymal stem cells in fibronectin/gelatin coated silk fibroin scaffolds. Ai C; Liu L; Goh JC Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112088. PubMed ID: 33947578 [TBL] [Abstract][Full Text] [Related]
6. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related]
7. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Luo J; Zhang H; Zhu J; Cui X; Gao J; Wang X; Xiong J Colloids Surf B Biointerfaces; 2018 Mar; 163():369-378. PubMed ID: 29335199 [TBL] [Abstract][Full Text] [Related]
8. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
9. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation. Paşcu EI; Cahill PA; Stokes J; McGuinness GB J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394 [TBL] [Abstract][Full Text] [Related]
10. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration. Maleki H; Shahbazi MA; Montes S; Hosseini SH; Eskandari MR; Zaunschirm S; Verwanger T; Mathur S; Milow B; Krammer B; Hüsing N ACS Appl Mater Interfaces; 2019 May; 11(19):17256-17269. PubMed ID: 31013056 [TBL] [Abstract][Full Text] [Related]
11. Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration. Li J; Wang Q; Gu Y; Zhu Y; Chen L; Chen Y Med Sci Monit; 2017 Nov; 23():5311-5320. PubMed ID: 29114098 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
13. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis. Song JE; Tripathy N; Lee DH; Park JH; Khang G ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112 [TBL] [Abstract][Full Text] [Related]
14. Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering. Sun K; Li H; Li R; Nian Z; Li D; Xu C Eur J Orthop Surg Traumatol; 2015 Feb; 25(2):243-9. PubMed ID: 25118870 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of mechanical and biological performance on hydroxyapatite/silk fibroin scaffolds facilitated by microwave-assisted mineralization strategy. Shao YF; Qing X; Peng Y; Wang H; Shao Z; Zhang KQ Colloids Surf B Biointerfaces; 2021 Jan; 197():111401. PubMed ID: 33186847 [TBL] [Abstract][Full Text] [Related]
17. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295 [TBL] [Abstract][Full Text] [Related]
18. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties. Wang X; Gu Z; Jiang B; Li L; Yu X Biomater Sci; 2016 Apr; 4(4):678-88. PubMed ID: 26870855 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts. Zhu M; Wang K; Mei J; Li C; Zhang J; Zheng W; An D; Xiao N; Zhao Q; Kong D; Wang L Acta Biomater; 2014 May; 10(5):2014-23. PubMed ID: 24486642 [TBL] [Abstract][Full Text] [Related]
20. Construction and in vitro characterization of three-dimensional silk fibroinchitosan scaffolds. Tong S; Xu DP; Liu ZM; Wang XK Dent Mater J; 2015; 34(4):475-84. PubMed ID: 26235712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]