These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31765186)

  • 1. Single-Shot Nondestructive Detection of Rydberg-Atom Ensembles by Transmission Measurement of a Microwave Cavity.
    Garcia S; Stammeier M; Deiglmayr J; Merkt F; Wallraff A
    Phys Rev Lett; 2019 Nov; 123(19):193201. PubMed ID: 31765186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling Rydberg Atoms to Microwave Fields in a Superconducting Coplanar Waveguide Resonator.
    Morgan AA; Hogan SD
    Phys Rev Lett; 2020 May; 124(19):193604. PubMed ID: 32469590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide.
    Hogan SD; Agner JA; Merkt F; Thiele T; Filipp S; Wallraff A
    Phys Rev Lett; 2012 Feb; 108(6):063004. PubMed ID: 22401065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast Preparation and Detection of a Rydberg Qubit Using Atomic Ensembles.
    Xu W; Venkatramani AV; Cantú SH; Šumarac T; Klüsener V; Lukin MD; Vuletić V
    Phys Rev Lett; 2021 Jul; 127(5):050501. PubMed ID: 34397223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Ramsey interferometer based on a single Rydberg polariton.
    Fan J; Jiao Y; Li C; Bai J; Zhao J; Jia S
    Opt Express; 2023 Sep; 31(19):31654-31660. PubMed ID: 37710679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nondestructive Rydberg atom counting with mesoscopic fields in a cavity.
    Maioli P; Meunier T; Gleyzes S; Auffeves A; Nogues G; Brune M; Raimond JM; Haroche S
    Phys Rev Lett; 2005 Mar; 94(11):113601. PubMed ID: 15903855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-photon transistor mediated by interstate Rydberg interactions.
    Gorniaczyk H; Tresp C; Schmidt J; Fedder H; Hofferberth S
    Phys Rev Lett; 2014 Aug; 113(5):053601. PubMed ID: 25126918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling ultracold atoms to a superconducting coplanar waveguide resonator.
    Hattermann H; Bothner D; Ley LY; Ferdinand B; Wiedmaier D; Sárkány L; Kleiner R; Koelle D; Fortágh J
    Nat Commun; 2017 Dec; 8(1):2254. PubMed ID: 29269855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum controlled-phase-flip gate between a flying optical photon and a Rydberg atomic ensemble.
    Hao YM; Lin GW; Xia K; Lin XM; Niu YP; Gong SQ
    Sci Rep; 2015 May; 5():10005. PubMed ID: 25966448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Single-Shot Imaging of Individual Ions via Homodyne Detection of Rydberg-Blockade-Induced Absorption.
    Du J; Vogt T; Li W
    Phys Rev Lett; 2023 Apr; 130(14):143004. PubMed ID: 37084455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing resonant energy transfer in collisions of ammonia with Rydberg helium atoms by microwave spectroscopy.
    Zhelyazkova V; Hogan SD
    J Chem Phys; 2017 Dec; 147(24):244302. PubMed ID: 29289135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators.
    Petrosyan D; Fleischhauer M
    Phys Rev Lett; 2008 May; 100(17):170501. PubMed ID: 18518262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atom counting statistics in ensembles of interacting Rydberg atoms.
    Liebisch TC; Reinhard A; Berman PR; Raithel G
    Phys Rev Lett; 2005 Dec; 95(25):253002. PubMed ID: 16384455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum sensing of microwave electric fields based on Rydberg atoms.
    Yuan J; Yang W; Jing M; Zhang H; Jiao Y; Li W; Zhang L; Xiao L; Jia S
    Rep Prog Phys; 2023 Sep; 86(10):. PubMed ID: 37604116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collective excitation of Rydberg-atom ensembles beyond the superatom model.
    Gärttner M; Whitlock S; Schönleber DW; Evers J
    Phys Rev Lett; 2014 Dec; 113(23):233002. PubMed ID: 25526126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast probing of ejection dynamics of Rydberg atoms and molecular fragments from electronically excited helium nanodroplets.
    Bünermann O; Kornilov O; Haxton DJ; Leone SR; Neumark DM; Gessner O
    J Chem Phys; 2012 Dec; 137(21):214302. PubMed ID: 23231226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric Rydberg-Atom Interferometry.
    Palmer JE; Hogan SD
    Phys Rev Lett; 2019 Jun; 122(25):250404. PubMed ID: 31347868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Induced Transparency in Warm and Strongly Interacting Rydberg Gases.
    Bai Z; Adams CS; Huang G; Li W
    Phys Rev Lett; 2020 Dec; 125(26):263605. PubMed ID: 33449776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave coupled Zeeman splitting spectroscopy of a cesium nP
    Fan J; Bai J; Song R; Jiao Y; Zhao J; Jia S
    Opt Express; 2024 Mar; 32(6):9297-9305. PubMed ID: 38571167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding potentials and interaction gates between microwave-dressed Rydberg atoms.
    Petrosyan D; Mølmer K
    Phys Rev Lett; 2014 Sep; 113(12):123003. PubMed ID: 25279625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.