These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31765201)

  • 1. Band-Gap-Dependent Electronic Compressibility of Carbon Nanotubes in the Wigner Crystal Regime.
    Lotfizadeh N; McCulley DR; Senger MJ; Fu H; Minot ED; Skinner B; Deshpande VV
    Phys Rev Lett; 2019 Nov; 123(19):197701. PubMed ID: 31765201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic Compressibility of Magic-Angle Graphene Superlattices.
    Tomarken SL; Cao Y; Demir A; Watanabe K; Taniguchi T; Jarillo-Herrero P; Ashoori RC
    Phys Rev Lett; 2019 Jul; 123(4):046601. PubMed ID: 31491239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wigner crystal physics in quantum wires.
    Meyer JS; Matveev KA
    J Phys Condens Matter; 2009 Jan; 21(2):023203. PubMed ID: 21813970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging the electronic Wigner crystal in one dimension.
    Shapir I; Hamo A; Pecker S; Moca CP; Legeza Ö; Zarand G; Ilani S
    Science; 2019 May; 364(6443):870-875. PubMed ID: 31147516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Emergence of the Hexagonal Lattice in Two-Dimensional Wigner Fragments.
    Escobar Azor M; Alrakik A; de Bentzmann L; Telleria-Allika X; Sánchez de Merás A; Evangelisti S; Berger JA
    J Phys Chem Lett; 2024 Apr; 15(13):3571-3575. PubMed ID: 38526852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping charge excitations in generalized Wigner crystals.
    Li H; Xiang Z; Regan E; Zhao W; Sailus R; Banerjee R; Taniguchi T; Watanabe K; Tongay S; Zettl A; Crommie MF; Wang F
    Nat Nanotechnol; 2024 May; 19(5):618-623. PubMed ID: 38286875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wigner high-electron-correlation regime of nonuniform density systems: A quantal-density-functional-theory study.
    Achan D; Massa L; Sahni V
    Phys Rev A; 2014 Aug; 90(2):. PubMed ID: 30631238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signatures of Wigner crystal of electrons in a monolayer semiconductor.
    Smoleński T; Dolgirev PE; Kuhlenkamp C; Popert A; Shimazaki Y; Back P; Lu X; Kroner M; Watanabe K; Taniguchi T; Esterlis I; Demler E; Imamoğlu A
    Nature; 2021 Jul; 595(7865):53-57. PubMed ID: 34194018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally enhanced Wigner oscillations in two-electron 1D quantum dots.
    Cavaliere F; Ziani NT; Negro F; Sassetti M
    J Phys Condens Matter; 2014 Dec; 26(50):505301. PubMed ID: 25419598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic and electronic properties of realizable size single-crystal GaN nanotubes by first principles.
    Yilmaz H; Singh SP; Marin C; Weiner BR; Morell G
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7753-61. PubMed ID: 22097483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excited-state Wigner crystals.
    Rogers FJ; Loos PF
    J Chem Phys; 2017 Jan; 146(4):044114. PubMed ID: 28147519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mott-Glass Phase of a One-Dimensional Quantum Fluid with Long-Range Interactions.
    Daviet R; Dupuis N
    Phys Rev Lett; 2020 Dec; 125(23):235301. PubMed ID: 33337184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On understanding the chemical origin of band gaps.
    Contreras-García J; Cardenas C
    J Mol Model; 2017 Aug; 23(9):271. PubMed ID: 28842804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Wigner localization of interacting electrons in a one-dimensional harmonic potential.
    Telleria-Allika X; Escobar Azor M; François G; Bendazzoli GL; Matxain JM; Lopez X; Evangelisti S; Berger JA
    J Chem Phys; 2022 Nov; 157(17):174107. PubMed ID: 36347706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exact-exchange spin-density functional theory of Wigner localization and phase transitions in quantum rings.
    Arnold T; Siegmund M; Pankratov O
    J Phys Condens Matter; 2011 Aug; 23(33):335601. PubMed ID: 21811009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube conditioning part 1-effect of interwall interaction on the electronic band gap of double-walled carbon nanotubes.
    Soto M; Vajtai R; Ajayan PM; Barrera EV
    Nanotechnology; 2018 Jan; 29(4):045701. PubMed ID: 29199975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.
    Graziani FR; Bauer JD; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033104. PubMed ID: 25314544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressibility of a fermionic mott insulator of ultracold atoms.
    Duarte PM; Hart RA; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Hulet RG
    Phys Rev Lett; 2015 Feb; 114(7):070403. PubMed ID: 25763942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption.
    Shim M; Ozel T; Gaur A; Wang C
    J Am Chem Soc; 2006 Jun; 128(23):7522-30. PubMed ID: 16756307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.