These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 31765513)
1. Force calibration for an endovascular robotic system with proximal force measurement. Sankaran NK; Chembrammel P; Kesavadas T Int J Med Robot; 2020 Apr; 16(2):e2045. PubMed ID: 31765513 [TBL] [Abstract][Full Text] [Related]
2. Design and Development of Surgeon Augmented Endovascular Robotic System. Sankaran NK; Chembrammel P; Siddiqui A; Snyder K; Kesavadas T IEEE Trans Biomed Eng; 2018 Nov; 65(11):2483-2493. PubMed ID: 29993507 [TBL] [Abstract][Full Text] [Related]
3. A linear stepping endovascular intervention robot with variable stiffness and force sensing. He C; Wang S; Zuo S Int J Comput Assist Radiol Surg; 2018 May; 13(5):671-682. PubMed ID: 29520525 [TBL] [Abstract][Full Text] [Related]
4. A CNN-based prototype method of unstructured surgical state perception and navigation for an endovascular surgery robot. Zhao Y; Guo S; Wang Y; Cui J; Ma Y; Zeng Y; Liu X; Jiang Y; Li Y; Shi L; Xiao N Med Biol Eng Comput; 2019 Sep; 57(9):1875-1887. PubMed ID: 31222531 [TBL] [Abstract][Full Text] [Related]
5. Learning-based endovascular navigation through the use of non-rigid registration for collaborative robotic catheterization. Chi W; Liu J; Rafii-Tari H; Riga C; Bicknell C; Yang GZ Int J Comput Assist Radiol Surg; 2018 Jun; 13(6):855-864. PubMed ID: 29651714 [TBL] [Abstract][Full Text] [Related]
6. Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery. He C; Wang S; Sang H; Li J; Zhang L Int J Med Robot; 2014 Sep; 10(3):314-24. PubMed ID: 24030887 [TBL] [Abstract][Full Text] [Related]
7. Reducing contact forces in the arch and supra-aortic vessels using the Magellan robot. Rafii-Tari H; Riga CV; Payne CJ; Hamady MS; Cheshire NJ; Bicknell CD; Yang GZ J Vasc Surg; 2016 Nov; 64(5):1422-1432. PubMed ID: 26386511 [TBL] [Abstract][Full Text] [Related]
8. Compensatory force measurement and multimodal force feedback for remote-controlled vascular interventional robot. Bao X; Guo S; Xiao N; Li Y; Shi L Biomed Microdevices; 2018 Aug; 20(3):74. PubMed ID: 30116968 [TBL] [Abstract][Full Text] [Related]
9. Performance evaluation of a robot-assisted catheter operating system with haptic feedback. Song Y; Guo S; Yin X; Zhang L; Hirata H; Ishihara H; Tamiya T Biomed Microdevices; 2018 Jun; 20(2):50. PubMed ID: 29926195 [TBL] [Abstract][Full Text] [Related]
10. A force-sensing surgical tool with a proximally located force/torque sensor. Schwalb W; Shirinzadeh B; Smith J Int J Med Robot; 2017 Mar; 13(1):. PubMed ID: 26919028 [TBL] [Abstract][Full Text] [Related]
11. Design and Performance Evaluation of Real-time Endovascular Interventional Surgical Robotic System with High Accuracy. Wang K; Chen B; Lu Q; Li H; Liu M; Shen Y; Xu Z Int J Med Robot; 2018 Oct; 14(5):e1915. PubMed ID: 29761842 [TBL] [Abstract][Full Text] [Related]
12. Hand-tool-tissue interaction forces in neurosurgery for haptic rendering. Aggravi M; De Momi E; DiMeco F; Cardinale F; Casaceli G; Riva M; Ferrigno G; Prattichizzo D Med Biol Eng Comput; 2016 Aug; 54(8):1229-41. PubMed ID: 26718558 [TBL] [Abstract][Full Text] [Related]
13. Feasibility of Robotic-Assisted Neurovascular Interventions: Initial Experience in Flow Model and Porcine Model. Britz GW; Tomas J; Lumsden A Neurosurgery; 2020 Feb; 86(2):309-314. PubMed ID: 30993336 [TBL] [Abstract][Full Text] [Related]
14. A novel noncontact detection method of surgeon's operation for a master-slave endovascular surgery robot. Zhao Y; Xing H; Guo S; Wang Y; Cui J; Ma Y; Liu Y; Liu X; Feng J; Li Y Med Biol Eng Comput; 2020 Apr; 58(4):871-885. PubMed ID: 32077011 [TBL] [Abstract][Full Text] [Related]
15. Feasibility and safety of renal and visceral target vessel cannulation using robotically steerable catheters during complex endovascular aortic procedures. Cochennec F; Kobeiter H; Gohel M; Marzelle J; Desgranges P; Allaire E; Becquemin JP J Endovasc Ther; 2015 Apr; 22(2):187-93. PubMed ID: 25809359 [TBL] [Abstract][Full Text] [Related]
16. Research of the master-slave robot surgical system with the function of force feedback. Shi Y; Zhou C; Xie L; Chen Y; Jiang J; Zhang Z; Deng Z Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28513095 [TBL] [Abstract][Full Text] [Related]
17. Preliminary study for motion scaling based control in minimally invasive vascular interventional robot. Feng ZQ; Bian GB; Xie XL; Hao JL; Gao ZJ; Hou ZG Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4898-901. PubMed ID: 26737390 [TBL] [Abstract][Full Text] [Related]
18. Intraocular robotic interventional surgical system (IRISS): Mechanical design, evaluation, and master-slave manipulation. Wilson JT; Gerber MJ; Prince SW; Chen CW; Schwartz SD; Hubschman JP; Tsao TC Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28762253 [TBL] [Abstract][Full Text] [Related]
19. A modular force-controlled robotic instrument for minimally invasive surgery - efficacy for being used in autonomous grasping against a variable pull force. Khadem SM; Behzadipour S; Mirbagheri A; Farahmand F Int J Med Robot; 2016 Dec; 12(4):620-633. PubMed ID: 26804489 [TBL] [Abstract][Full Text] [Related]
20. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot. Hu Z; Yoon CH; Park SB; Jo YH Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]