These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 31765564)

  • 21. CRISPR/Cas9-deaminase enables robust base editing in Rhodobacter sphaeroides 2.4.1.
    Luo Y; Ge M; Wang B; Sun C; Wang J; Dong Y; Xi JJ
    Microb Cell Fact; 2020 Apr; 19(1):93. PubMed ID: 32334589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer simulations explain mutation-induced effects on the DNA editing by adenine base editors.
    Rallapalli KL; Komor AC; Paesani F
    Sci Adv; 2020 Mar; 6(10):eaaz2309. PubMed ID: 32181363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. nCas9 Engineering for Improved Target Interaction Presents an Effective Strategy to Enhance Base Editing.
    Zhang G; Song Z; Huang S; Wang Y; Sun J; Qiao L; Li G; Feng Y; Han W; Tang J; Chen Y; Huang X; Liu F; Wang X; Liu J
    Adv Sci (Weinh); 2024 Aug; 11(31):e2405426. PubMed ID: 38881503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR base editors: genome editing without double-stranded breaks.
    Eid A; Alshareef S; Mahfouz MM
    Biochem J; 2018 Jun; 475(11):1955-1964. PubMed ID: 29891532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells.
    Brookhouser N; Nguyen T; Tekel SJ; Standage-Beier K; Wang X; Brafman DA
    BMC Biol; 2020 Dec; 18(1):193. PubMed ID: 33317513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria.
    Li C; Wang L; Cseke LJ; Vasconcelos F; Huguet-Tapia JC; Gassmann W; Pauwels L; White FF; Dong H; Yang B
    Commun Biol; 2023 Jan; 6(1):56. PubMed ID: 36646768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The "new favorite" of gene editing technology-single base editors.
    Wei Y; Zhang XH; Li DL
    Yi Chuan; 2017 Dec; 39(12):1115-1121. PubMed ID: 29258982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-efficiency and multiplex adenine base editing in plants using new TadA variants.
    Yan D; Ren B; Liu L; Yan F; Li S; Wang G; Sun W; Zhou X; Zhou H
    Mol Plant; 2021 May; 14(5):722-731. PubMed ID: 33631420
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools.
    Zeng D; Zheng Z; Liu Y; Liu T; Li T; Liu J; Luo Q; Xue Y; Li S; Chai N; Yu S; Xie X; Liu YG; Zhu Q
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity.
    Neugebauer ME; Hsu A; Arbab M; Krasnow NA; McElroy AN; Pandey S; Doman JL; Huang TP; Raguram A; Banskota S; Newby GA; Tolar J; Osborn MJ; Liu DR
    Nat Biotechnol; 2023 May; 41(5):673-685. PubMed ID: 36357719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos.
    Chen L; Hong M; Luan C; Gao H; Ru G; Guo X; Zhang D; Zhang S; Li C; Wu J; Randolph PB; Sousa AA; Qu C; Zhu Y; Guan Y; Wang L; Liu M; Feng B; Song G; Liu DR; Li D
    Nat Biotechnol; 2024 Apr; 42(4):638-650. PubMed ID: 37322276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Vivo Rapid Investigation of CRISPR-Based Base Editing Components in
    Shelake RM; Pramanik D; Kim JY
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion.
    Huang L; Dong H; Zheng J; Wang B; Pan L
    Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Web-Based Base Editing Toolkits: BE-Designer and BE-Analyzer.
    Hwang GH; Bae S
    Methods Mol Biol; 2021; 2189():81-88. PubMed ID: 33180295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting fidelity of adenine and cytosine base editors in mouse embryos.
    Lee HK; Willi M; Miller SM; Kim S; Liu C; Liu DR; Hennighausen L
    Nat Commun; 2018 Nov; 9(1):4804. PubMed ID: 30442934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants.
    Yu M; Kuang Y; Wang C; Wu X; Li S; Zhang D; Sun W; Zhou X; Ren B; Zhou H
    Plant Commun; 2024 Aug; 5(8):100926. PubMed ID: 38725246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expanding the base editing scope in rice by using Cas9 variants.
    Hua K; Tao X; Zhu JK
    Plant Biotechnol J; 2019 Feb; 17(2):499-504. PubMed ID: 30051586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adenine base editors catalyze cytosine conversions in human cells.
    Kim HS; Jeong YK; Hur JK; Kim JS; Bae S
    Nat Biotechnol; 2019 Oct; 37(10):1145-1148. PubMed ID: 31548727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A split and inducible adenine base editor for precise in vivo base editing.
    Zeng H; Yuan Q; Peng F; Ma D; Lingineni A; Chee K; Gilberd P; Osikpa EC; Sun Z; Gao X
    Nat Commun; 2023 Sep; 14(1):5573. PubMed ID: 37696818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering of near-PAMless adenine base editor with enhanced editing activity and reduced off-target.
    Cao X; Guo J; Huang S; Yu W; Li G; An L; Li X; Tao W; Liu Q; Huang X; Jin X; Ma X
    Mol Ther Nucleic Acids; 2022 Jun; 28():732-742. PubMed ID: 35664696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.