These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31765817)

  • 21. Characteristics of low-energy ion beams extracted from a wire electrode geometry.
    Vasquez M; Tokumura S; Kasuya T; Maeno S; Wada M
    Rev Sci Instrum; 2012 Feb; 83(2):023301. PubMed ID: 22380083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Movable multi-probes for plasma boundary measurement in Sino-UNIted Spherical Tokamak.
    Chai S; Wang W; Tan Y; Gao Z
    Rev Sci Instrum; 2014 Nov; 85(11):11D804. PubMed ID: 25430217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variable-deceleration-ratio wide-acceptance-angle electrostatic lens for two-dimensional angular and energy analysis.
    Matsuda H; Tóth L; Daimon H
    Rev Sci Instrum; 2018 Dec; 89(12):123105. PubMed ID: 30599611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analyzer system capable of determining energy and direction of charged particles in ultrahigh vacuum.
    Allyn CL; Gustafsson T; Plummer EW
    Rev Sci Instrum; 1978 Aug; 49(8):1197. PubMed ID: 18699280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 2-D energy analyzer for low energy electrons.
    Karkare S; Cultrera L; Hwang YW; Merluzzi R; Bazarov I
    Rev Sci Instrum; 2015 Mar; 86(3):033301. PubMed ID: 25832217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of a retarding potential grid system for a neutral particle analyzer.
    Titus JB; Anderson JK; Reusch JA; Mezonlin ED
    Rev Sci Instrum; 2014 Nov; 85(11):11D402. PubMed ID: 25430165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compact scanning retarding potential analyzer.
    Goebel DM; Becatti G
    Rev Sci Instrum; 2021 Jan; 92(1):013511. PubMed ID: 33514243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a high-sensitivity negative ion source time-of-flight mass analyzer assembly created by cylindrical electrodes with a common axis.
    Ioanoviciu D; Cuna C; Cosma V; Albert I; Szilagyi E
    J Mass Spectrom; 2004 Dec; 39(12):1403-7. PubMed ID: 15578737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurements of the energy distribution of a high brightness rubidium ion beam.
    Ten Haaf G; Wouters SHW; Nijhof DFJ; Mutsaers PHA; Vredenbregt EJD
    Ultramicroscopy; 2018 Jul; 190():12-20. PubMed ID: 29660686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Projection-type electron spectroscopy collimator analyzer for charged particles and x-ray detections.
    Matsui F; Matsuda H
    Rev Sci Instrum; 2021 Jul; 92(7):073301. PubMed ID: 34340415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gradient magnet design for simultaneous detection of electrons and positrons in the intermediate MeV range.
    Tiwari G; Kupfer R; Jiao X; Gaul E; Hegelich BM
    Rev Sci Instrum; 2019 Aug; 90(8):083304. PubMed ID: 31472603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analyzer system for field emission energy distribution (FEED) measurements.
    Kempin HF; Klapper K; Ertl G
    Rev Sci Instrum; 1978 Sep; 49(9):1285. PubMed ID: 18699303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical simulation of gridded electrostatic lens.
    Kropachev GN; Alexeev NN; Balabin AI; Kulevoy TV; Nikolaev VI
    Rev Sci Instrum; 2012 Feb; 83(2):02B907. PubMed ID: 22380339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Space-charge compensation measurements in electron cyclotron resonance ion source low energy beam transport lines with a retarding field analyzer.
    Winklehner D; Leitner D; Cole D; Machicoane G; Tobos L
    Rev Sci Instrum; 2014 Feb; 85(2):02A739. PubMed ID: 24593473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retarding Field Integrated Fluorescence and Electron Microscope.
    Vos Y; Lane RI; Peddie CJ; Wolters AHG; Hoogenboom JP
    Microsc Microanal; 2021 Feb; 27(1):109-120. PubMed ID: 33349285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of a microfabricated, two-electrode phase-contrast element suitable for electron microscopy.
    Cambie R; Downing KH; Typke D; Glaeser RM; Jin J
    Ultramicroscopy; 2007; 107(4-5):329-39. PubMed ID: 17079082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources.
    Shavorskiy A; Neppl S; Slaughter DS; Cryan JP; Siefermann KR; Weise F; Lin MF; Bacellar C; Ziemkiewicz MP; Zegkinoglou I; Fraund MW; Khurmi C; Hertlein MP; Wright TW; Huse N; Schoenlein RW; Tyliszczak T; Coslovich G; Robinson J; Kaindl RA; Rude BS; Ölsner A; Mähl S; Bluhm H; Gessner O
    Rev Sci Instrum; 2014 Sep; 85(9):093102. PubMed ID: 25273702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Geometries and focal properties of two electron-lens systems useful in low-energy electron or ion scattering.
    Chutjian A
    Rev Sci Instrum; 1979 Mar; 50(3):347. PubMed ID: 18699506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase plate.
    Majorovits E; Barton B; Schultheiss K; Pérez-Willard F; Gerthsen D; Schröder RR
    Ultramicroscopy; 2007; 107(2-3):213-26. PubMed ID: 16949755
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Corrections of magnification and focusing in a cathode lens-equipped scanning electron microscope.
    Zobacová J; Zobac M; Oral M; Müllerová I; Frank L
    Scanning; 2006; 28(3):155-63. PubMed ID: 16878787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.