These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 31766027)
21. Determination of volatile compounds in turbot (Psetta maxima) during refrigerated storage by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Xu Y; Liu Y; Jiang C; Zhang C; Li X; Zhu D; Li J J Sci Food Agric; 2014 Sep; 94(12):2464-71. PubMed ID: 25165779 [TBL] [Abstract][Full Text] [Related]
22. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS). Taylor C; Lough F; Stanforth SP; Schwalbe EC; Fowlis IA; Dean JR Anal Bioanal Chem; 2017 Jul; 409(17):4247-4256. PubMed ID: 28484808 [TBL] [Abstract][Full Text] [Related]
23. Potential aromatic compounds as markers to differentiate between Tuber melanosporum and Tuber indicum truffles. Culleré L; Ferreira V; Venturini ME; Marco P; Blanco D Food Chem; 2013 Nov; 141(1):105-10. PubMed ID: 23768334 [TBL] [Abstract][Full Text] [Related]
24. Investigation of volatile organic metabolites in lung cancer pleural effusions by solid-phase microextraction and gas chromatography/mass spectrometry. Liu H; Wang H; Li C; Wang L; Pan Z; Wang L J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 945-946():53-9. PubMed ID: 24321761 [TBL] [Abstract][Full Text] [Related]
25. Volatile metabolomic signature of bladder cancer cell lines based on gas chromatography-mass spectrometry. Rodrigues D; Pinto J; Araújo AM; Monteiro-Reis S; Jerónimo C; Henrique R; de Lourdes Bastos M; de Pinho PG; Carvalho M Metabolomics; 2018 Apr; 14(5):62. PubMed ID: 30830384 [TBL] [Abstract][Full Text] [Related]
26. Characterization of Volatile Profiles of Six Popular Edible Mushrooms Using Headspace-Solid-Phase Microextraction Coupled with Gas Chromatography Combined with Chemometric Analysis. Jung MY; Lee DE; Cheng HY; Chung IM; Kim SH; Han JG; Kong WS J Food Sci; 2019 Mar; 84(3):421-429. PubMed ID: 30775790 [TBL] [Abstract][Full Text] [Related]
27. Determination of different recreational drugs in sweat by headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME GC/MS): Application to drugged drivers. Gentili S; Mortali C; Mastrobattista L; Berretta P; Zaami S J Pharm Biomed Anal; 2016 Sep; 129():282-287. PubMed ID: 27442890 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of salivary VOC profile composition directed towards oral cancer and oral lesion assessment. Monedeiro F; Monedeiro-Milanowski M; Zmysłowski H; De Martinis BS; Buszewski B Clin Oral Investig; 2021 Jul; 25(7):4415-4430. PubMed ID: 33387033 [TBL] [Abstract][Full Text] [Related]
29. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS. Ferreira L; Perestrelo R; Caldeira M; Câmara JS J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016 [TBL] [Abstract][Full Text] [Related]
30. Headspace solid phase microextraction and gas chromatography-quadrupole mass spectrometry methodology for analysis of volatile compounds of marine salt as potential origin biomarkers. Silva I; Rocha SM; Coimbra MA Anal Chim Acta; 2009 Mar; 635(2):167-74. PubMed ID: 19216874 [TBL] [Abstract][Full Text] [Related]
31. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS). Aprea E; Biasioli F; Carlin S; Endrizzi I; Gasperi F J Agric Food Chem; 2009 May; 57(10):4011-8. PubMed ID: 19348421 [TBL] [Abstract][Full Text] [Related]
32. Determination of volatile organic compounds in human breath for Helicobacter pylori detection by SPME-GC/MS. Ulanowska A; Kowalkowski T; Hrynkiewicz K; Jackowski M; Buszewski B Biomed Chromatogr; 2011 Mar; 25(3):391-7. PubMed ID: 21321973 [TBL] [Abstract][Full Text] [Related]
33. Distinguish oral-source VOCs and control their potential impact on breath biomarkers. Ge D; Zhou J; Chu Y; Lu Y; Zou X; Xia L; Liu Y; Huang C; Shen C; Zhang L; Wang H; Chu Y Anal Bioanal Chem; 2022 Mar; 414(6):2275-2284. PubMed ID: 34982180 [TBL] [Abstract][Full Text] [Related]
34. GC-MS Characterization of Volatile Flavor Compounds in Stinky Tofu Brine by Optimization of Headspace Solid-Phase Microextraction Conditions. Tang H; Ma JK; Chen L; Jiang LW; Xie J; Li P; He J Molecules; 2018 Nov; 23(12):. PubMed ID: 30513662 [TBL] [Abstract][Full Text] [Related]
35. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPME-GC-MS. Guo Y; Chen D; Dong Y; Ju H; Wu C; Lin S J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Nov; 1099():46-55. PubMed ID: 30241073 [TBL] [Abstract][Full Text] [Related]
36. Determination of volatile organic compounds including alcohols in refill fluids and cartridges of electronic cigarettes by headspace solid-phase micro extraction and gas chromatography-mass spectrometry. Lim HH; Shin HS Anal Bioanal Chem; 2017 Feb; 409(5):1247-1256. PubMed ID: 27826631 [TBL] [Abstract][Full Text] [Related]
37. Characterization of volatile profile from ten different varieties of Chinese jujubes by HS-SPME/GC-MS coupled with E-nose. Chen Q; Song J; Bi J; Meng X; Wu X Food Res Int; 2018 Mar; 105():605-615. PubMed ID: 29433254 [TBL] [Abstract][Full Text] [Related]
38. Volatolomics approach by HS-SPME-GC-MS and multivariate analysis to discriminate olive tree varieties infected by Xylella fastidiosa. Mentana A; Camele I; Mang SM; De Benedetto GE; Frisullo S; Centonze D Phytochem Anal; 2019 Nov; 30(6):623-634. PubMed ID: 31020714 [TBL] [Abstract][Full Text] [Related]
39. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry. Lattuati-Derieux A; Thao-Heu S; Lavédrine B J Chromatogr A; 2011 Jul; 1218(28):4498-508. PubMed ID: 21645901 [TBL] [Abstract][Full Text] [Related]
40. Optimisation of solid-phase microextraction combined with gas chromatography-mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Perestrelo R; Barros AS; Rocha SM; Câmara JS Talanta; 2011 Sep; 85(3):1483-93. PubMed ID: 21807213 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]