These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 31766037)
1. Deep learning approaches for plethysmography signal quality assessment in the presence of atrial fibrillation. Pereira T; Ding C; Gadhoumi K; Tran N; Colorado RA; Meisel K; Hu X Physiol Meas; 2019 Dec; 40(12):125002. PubMed ID: 31766037 [TBL] [Abstract][Full Text] [Related]
2. A Supervised Approach to Robust Photoplethysmography Quality Assessment. Pereira T; Gadhoumi K; Ma M; Liu X; Xiao R; Colorado RA; Keenan KJ; Meisel K; Hu X IEEE J Biomed Health Inform; 2020 Mar; 24(3):649-657. PubMed ID: 30951482 [TBL] [Abstract][Full Text] [Related]
3. Deep Learning Approaches to Detect Atrial Fibrillation Using Photoplethysmographic Signals: Algorithms Development Study. Kwon S; Hong J; Choi EK; Lee E; Hostallero DE; Kang WJ; Lee B; Jeong ER; Koo BK; Oh S; Yi Y JMIR Mhealth Uhealth; 2019 Jun; 7(6):e12770. PubMed ID: 31199302 [TBL] [Abstract][Full Text] [Related]
4. Detection of Atrial Fibrillation Using a Ring-Type Wearable Device (CardioTracker) and Deep Learning Analysis of Photoplethysmography Signals: Prospective Observational Proof-of-Concept Study. Kwon S; Hong J; Choi EK; Lee B; Baik C; Lee E; Jeong ER; Koo BK; Oh S; Yi Y J Med Internet Res; 2020 May; 22(5):e16443. PubMed ID: 32348254 [TBL] [Abstract][Full Text] [Related]
5. Detecting Atrial Fibrillation and Atrial Flutter in Daily Life Using Photoplethysmography Data. Eerikainen LM; Bonomi AG; Schipper F; Dekker LRC; de Morree HM; Vullings R; Aarts RM IEEE J Biomed Health Inform; 2020 Jun; 24(6):1610-1618. PubMed ID: 31689222 [TBL] [Abstract][Full Text] [Related]
6. A supervised machine learning semantic segmentation approach for detecting artifacts in plethysmography signals from wearables. Guo Z; Ding C; Hu X; Rudin C Physiol Meas; 2021 Dec; 42(12):. PubMed ID: 34794126 [No Abstract] [Full Text] [Related]
7. Learning From Alarms: A Robust Learning Approach for Accurate Photoplethysmography-Based Atrial Fibrillation Detection Using Eight Million Samples Labeled With Imprecise Arrhythmia Alarms. Ding C; Guo Z; Rudin C; Xiao R; Shah A; Do DH; Lee RJ; Clifford G; Nahab FB; Hu X IEEE J Biomed Health Inform; 2024 May; 28(5):2650-2661. PubMed ID: 38300786 [TBL] [Abstract][Full Text] [Related]
8. Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms. Poh MZ; Poh YC; Chan PH; Wong CK; Pun L; Leung WW; Wong YF; Wong MM; Chu DW; Siu CW Heart; 2018 Dec; 104(23):1921-1928. PubMed ID: 29853485 [TBL] [Abstract][Full Text] [Related]
9. Comparison between electrocardiogram- and photoplethysmogram-derived features for atrial fibrillation detection in free-living conditions. Eerikäinen LM; Bonomi AG; Schipper F; Dekker LRC; Vullings R; de Morree HM; Aarts RM Physiol Meas; 2018 Aug; 39(8):084001. PubMed ID: 29995641 [TBL] [Abstract][Full Text] [Related]
10. Monitoring of heart rate and inter-beat intervals with wrist plethysmography in patients with atrial fibrillation. Harju J; Tarniceriu A; Parak J; Vehkaoja A; Yli-Hankala A; Korhonen I Physiol Meas; 2018 Jun; 39(6):065007. PubMed ID: 29856730 [TBL] [Abstract][Full Text] [Related]
11. Atrial Fibrillation Classification with Smart Wearables Using Short-Term Heart Rate Variability and Deep Convolutional Neural Networks. Ramesh J; Solatidehkordi Z; Aburukba R; Sagahyroon A Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770543 [TBL] [Abstract][Full Text] [Related]
12. Signal Quality Assessment of PPG Signals using STFT Time-Frequency Spectra and Deep Learning Approaches. Chen J; Sun K; Sun Y; Li X Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1153-1156. PubMed ID: 34891492 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Relevant Features from Photoplethysmographic Signals for Atrial Fibrillation Classification. Millán CA; Girón NA; Lopez DM Int J Environ Res Public Health; 2020 Jan; 17(2):. PubMed ID: 31941071 [TBL] [Abstract][Full Text] [Related]
14. Smartwatch Based Atrial Fibrillation Detection from Photoplethysmography Signals. Bashar SK; Han D; Ding E; Whitcomb C; McManus DD; Chon KH Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4306-4309. PubMed ID: 31946820 [TBL] [Abstract][Full Text] [Related]
15. Optimized Signal Quality Assessment for Photoplethysmogram Signals Using Feature Selection. Mohagheghian F; Han D; Peitzsch A; Nishita N; Ding E; Dickson EL; DiMezza D; Otabil EM; Noorishirazi K; Scott J; Lessard D; Wang Z; Whitcomb C; Tran KV; Fitzgibbons TP; McManus DD; Chon KH IEEE Trans Biomed Eng; 2022 Sep; 69(9):2982-2993. PubMed ID: 35275809 [TBL] [Abstract][Full Text] [Related]
16. Intelligent Detection Method of Atrial Fibrillation by CEPNCC-BiLSTM Based on Long-Term Photoplethysmography Data. Wang Z; Fan J; Dai Y; Zheng H; Wang P; Chen H; Wu Z Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204938 [TBL] [Abstract][Full Text] [Related]
17. Mobile Phone-Based Use of the Photoplethysmography Technique to Detect Atrial Fibrillation in Primary Care: Diagnostic Accuracy Study of the FibriCheck App. Proesmans T; Mortelmans C; Van Haelst R; Verbrugge F; Vandervoort P; Vaes B JMIR Mhealth Uhealth; 2019 Mar; 7(3):e12284. PubMed ID: 30916656 [TBL] [Abstract][Full Text] [Related]