These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31766046)

  • 1. Low thermal conductivity of peanut-shaped carbon nanotube and its insensitive response to uniaxial strain.
    Sun J; Yuan K; Zhou W; Zhang X; Onoe J; Kawazoe Y; Wang Q
    Nanotechnology; 2020 Mar; 31(11):115701. PubMed ID: 31766046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low lattice thermal conductivity of a 5-8-peanut-shaped carbon nanotube.
    Sun J; Chen Y; Wang Q
    Phys Chem Chem Phys; 2021 Mar; 23(9):5460-5466. PubMed ID: 33650588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of heat conduction in carbon nanotubes filled with fullerene molecules.
    Cui L; Feng Y; Zhang X
    Phys Chem Chem Phys; 2015 Nov; 17(41):27520-6. PubMed ID: 26426675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Conductivity of Two Types of 2D Carbon Allotropes: a Molecular Dynamics Study.
    Li S; Ren H; Zhang Y; Xie X; Cai K; Li C; Wei N
    Nanoscale Res Lett; 2019 Jan; 14(1):7. PubMed ID: 30618012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe
    Shafique A; Shin YH
    Phys Chem Chem Phys; 2017 Dec; 19(47):32072-32078. PubMed ID: 29181465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal transport in C
    Cheng X; Wang X
    Nanotechnology; 2019 Jun; 30(25):255401. PubMed ID: 30769336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of longitudinal isotope substitution on the thermal conductivity of carbon nanotubes: results of nonequilibrium molecular dynamics and local density functional calculations.
    Leroy F; Schulte J; Balasubramanian G; Böhm MC
    J Chem Phys; 2014 Apr; 140(14):144704. PubMed ID: 24735310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Conductivity of Metal-Coated Tri-Walled Carbon Nanotubes in the Presence of Vacancies-Molecular Dynamics Simulations.
    Dhumal RS; Bommidi D; Salehinia I
    Nanomaterials (Basel); 2019 May; 9(6):. PubMed ID: 31142028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient mechanical modulation of the phonon thermal conductivity of Mo
    Xu K; Deng S; Liang T; Cao X; Han M; Zeng X; Zhang Z; Yang N; Wu J
    Nanoscale; 2022 Feb; 14(8):3078-3086. PubMed ID: 35138319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of thermal transport in porous nanotube network structures.
    Varshney V; Roy AK; Froudakis G; Farmer BL
    Nanoscale; 2011 Sep; 3(9):3679-84. PubMed ID: 21808788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disparate strain response of the thermal transport properties of bilayer penta-graphene as compared to that of monolayer penta-graphene.
    Sun Z; Yuan K; Zhang X; Qin G; Gong X; Tang D
    Phys Chem Chem Phys; 2019 Jul; 21(28):15647-15655. PubMed ID: 31268444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low thermal conductivity in ultrathin carbon nanotube (2, 1).
    Zhu L; Li B
    Sci Rep; 2014 May; 4():4917. PubMed ID: 24815003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of Thermal Conductivity of Carbon Nanopeapods on Filling Ratios of Fullerene Molecules.
    Cui L; Feng Y; Zhang X
    J Phys Chem A; 2015 Nov; 119(45):11226-32. PubMed ID: 26485312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic Mechanism of Tunable Thermal Conductivity in Carbon Nanotube-Geopolymer Nanocomposites.
    Liu W; Qin L; Zhao CY; Ju S
    J Phys Chem B; 2023 Mar; 127(10):2267-2276. PubMed ID: 36863008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical and thermal properties of graphyne-coated carbon nanotubes: a molecular dynamics simulation on one-dimensional all-carbon van der Waals heterostructures.
    Li J; Ying P; Liang T; Du Y; Zhou J; Zhang J
    Phys Chem Chem Phys; 2023 Mar; 25(12):8651-8663. PubMed ID: 36891945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain controlled thermomutability of single-walled carbon nanotubes.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 May; 20(18):185701. PubMed ID: 19420624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice Mismatch Dominant Yet Mechanically Tunable Thermal Conductivity in Bilayer Heterostructures.
    Gao Y; Liu Q; Xu B
    ACS Nano; 2016 May; 10(5):5431-9. PubMed ID: 27093571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-plane and cross-plane thermal conductivities of molybdenum disulfide.
    Ding Z; Jiang JW; Pei QX; Zhang YW
    Nanotechnology; 2015 Feb; 26(6):065703. PubMed ID: 25597653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equilibrium limit of thermal conduction and boundary scattering in nanostructures.
    Haskins JB; Kınacı A; Sevik C; Çağın T
    J Chem Phys; 2014 Jun; 140(24):244112. PubMed ID: 24985623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of carbon nanotubes with quantum correction via heat capacity.
    Wu MC; Hsu JY
    Nanotechnology; 2009 Apr; 20(14):145401. PubMed ID: 19420526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.