BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 31766382)

  • 1. N-acetylcysteine reduces oxidative stress, nuclear factor‑κB activity and cardiomyocyte apoptosis in heart failure.
    Wu XY; Luo AY; Zhou YR; Ren JH
    Mol Med Rep; 2014 Aug; 10(2):615-24. PubMed ID: 24889421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Niosomes loading N-acetyl-L-cysteine for cancer treatment in vivo study.
    Mohamad EA; Ali AA; Sharaky M; El-Gebaly RH
    Naunyn Schmiedebergs Arch Pharmacol; 2024 Jun; 397(6):4339-4353. PubMed ID: 38091079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maladaptive response following glucose overload in GLUT4-overexpressing H9C2 cardiomyoblasts.
    Stratmann B; Eggers B; Mattern Y; de Carvalho TS; Marcus-Alic K; Tschoepe D
    Diabetes Obes Metab; 2024 Jun; 26(6):2379-2389. PubMed ID: 38528822
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Argaev Frenkel L; Rozenfeld H; Rozenberg K; Sampson SR; Rosenzweig T
    Curr Dev Nutr; 2019 Apr; 3(4):nzy097. PubMed ID: 30993256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complex landscape of intracellular signalling in protein modification under hyperglycaemic stress leading to metabolic disorders.
    Khan H; Khanam A; Khan AA; Ahmad R; Husain A; Habib S; Ahmad S; Moinuddin
    Protein J; 2024 Jun; 43(3):425-436. PubMed ID: 38491250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Pilot Examination of Oxidative Stress in Trichotillomania.
    Grant JE; Chamberlain SR
    Psychiatry Investig; 2018 Dec; 15(12):1130-1134. PubMed ID: 30602106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metformin is synthetically lethal with glucose withdrawal in cancer cells.
    Khurana A; Shridhar V
    Cell Cycle; 2012 Aug; 11(15):2779-80. PubMed ID: 22814629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction: Chronic hyperglycaemia increases the vulnerability of the hippocampus to oxidative damage induced during post-hypoglycaemic hyperglycaemia in a mouse model of chemically induced type 1 diabetes.
    McNeilly AD; Gallagher JR; Evans ML; de Galan BE; Pedersen-Bjergaard U; Thorens B; Dinkova-Kostova AT; Huang JT; Ashford MLJ; McCrimmon RJ;
    Diabetologia; 2024 Jun; ():. PubMed ID: 38864888
    [No Abstract]   [Full Text] [Related]  

  • 9. Long-Term Cardiac Damage Associated With Abdominal Irradiation in Mice.
    Wang Z; Jia Z; Zhou Z; Zhao X; Wang F; Zhang X; Tse G; Li G; Liu Y; Liu T
    Front Pharmacol; 2022; 13():850735. PubMed ID: 35273513
    [No Abstract]   [Full Text] [Related]  

  • 10. N-Acetyl Cysteine, Selenium, and Ascorbic Acid Rescue Diabetic Cardiac Hypertrophy via Mitochondrial-Associated Redox Regulators.
    Mushtaq I; Bashir Z; Sarwar M; Arshad M; Ishtiaq A; Khan W; Khan U; Tabassum S; Ali T; Fatima T; Valadi H; Nawaz M; Murtaza I
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidants Supplementation Reduces Ceramide Synthesis Improving the Cardiac Insulin Transduction Pathway in a Rodent Model of Obesity.
    Hodun K; Sztolsztener K; Chabowski A
    Nutrients; 2021 Sep; 13(10):. PubMed ID: 34684414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoglycemic effect of
    Li J; Luo J; Chai Y; Guo Y; Tianzhi Y; Bao Y
    Food Sci Nutr; 2021 Apr; 9(4):2075-2085. PubMed ID: 33841825
    [No Abstract]   [Full Text] [Related]  

  • 13. The triterpene, methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA3), attenuates high glucose-induced oxidative damage and apoptosis by improving energy metabolism.
    Sangweni NF; Mosa RA; Dludla PV; Kappo AP; Opoku AR; Muller CJF; Johnson R
    Phytomedicine; 2021 May; 85():153546. PubMed ID: 33799221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Combination Effect of Aspalathin and Phenylpyruvic Acid-2-
    Dludla PV; Muller CJF; Louw J; Mazibuko-Mbeje SE; Tiano L; Silvestri S; Orlando P; Marcheggiani F; Cirilli I; Chellan N; Ghoor S; Nkambule BB; Essop MF; Huisamen B; Johnson R
    Nutrients; 2020 Apr; 12(4):. PubMed ID: 32325968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-acetylcysteine attenuates myocardial dysfunction and postischemic injury by restoring caveolin-3/eNOS signaling in diabetic rats.
    Su W; Zhang Y; Zhang Q; Xu J; Zhan L; Zhu Q; Lian Q; Liu H; Xia ZY; Xia Z; Lei S
    Cardiovasc Diabetol; 2016 Oct; 15(1):146. PubMed ID: 27733157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Systematic Review on the Protective Effect of N-Acetyl Cysteine Against Diabetes-Associated Cardiovascular Complications.
    Dludla PV; Dias SC; Obonye N; Johnson R; Louw J; Nkambule BB
    Am J Cardiovasc Drugs; 2018 Aug; 18(4):283-298. PubMed ID: 29623672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardioprotective effects of insulin: how intensive insulin therapy may benefit cardiac surgery patients.
    Ng KW; Allen ML; Desai A; Macrae D; Pathan N
    Circulation; 2012 Feb; 125(5):721-8. PubMed ID: 22311884
    [No Abstract]   [Full Text] [Related]  

  • 18. An In Vitro Study on the Combination Effect of Metformin and N-Acetyl Cysteine against Hyperglycaemia-Induced Cardiac Damage.
    Johnson R; Sangweni NF; Mabhida SE; Dludla PV; Mabasa L; Riedel S; Chapman C; Mosa RA; Kappo AP; Louw J; Muller CJF
    Nutrients; 2019 Nov; 11(12):. PubMed ID: 31766382
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.