BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 31766483)

  • 1. The Efficiency of Color Space Channels to Quantify Color and Color Intensity Change in Liquids, pH Strips, and Lateral Flow Assays with Smartphones.
    Nelis JLD; Bura L; Zhao Y; Burkin KM; Rafferty K; Elliott CT; Campbell K
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Randomized Combined Channel Approach for the Quantification of Color- and Intensity-Based Assays with Smartphones.
    Nelis JLD; Zhao Y; Bura L; Rafferty K; Elliott CT; Campbell K
    Anal Chem; 2020 Jun; 92(11):7852-7860. PubMed ID: 32383383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smartphone-based colorimetric analysis for detection of saliva alcohol concentration.
    Jung Y; Kim J; Awofeso O; Kim H; Regnier F; Bae E
    Appl Opt; 2015 Nov; 54(31):9183-9. PubMed ID: 26560572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secure Food-Allergen Determination by Combining Smartphone-Based Raw Image Analyses and Liquid Chromatography-Mass Spectrometry for the Quantification of Proteins Contained in Lateral Flow Assays.
    Nelis JLD; Moddejongen S; Guan X; Anderson A; Colgrave ML; Broadbent JA
    Anal Chem; 2022 Dec; 94(49):17046-17054. PubMed ID: 36445804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smartphone-based colorimetric detection system for portable health tracking.
    Balbach S; Jiang N; Moreddu R; Dong X; Kurz W; Wang C; Dong J; Yin Y; Butt H; Brischwein M; Hayden O; Jakobi M; Tasoglu S; Koch AW; Yetisen AK
    Anal Methods; 2021 Oct; 13(38):4361-4369. PubMed ID: 34494633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accessory-free quantitative smartphone imaging of colorimetric paper-based assays.
    Kong T; You JB; Zhang B; Nguyen B; Tarlan F; Jarvi K; Sinton D
    Lab Chip; 2019 Jun; 19(11):1991-1999. PubMed ID: 31044203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing.
    Wang X; Chang TW; Lin G; Gartia MR; Liu GL
    Anal Chem; 2017 Jan; 89(1):611-615. PubMed ID: 27976865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photography by Cameras Integrated in Smartphones as a Tool for Analytical Chemistry Represented by an Butyrylcholinesterase Activity Assay.
    Pohanka M
    Sensors (Basel); 2015 Jun; 15(6):13752-62. PubMed ID: 26110404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets.
    Vashist SK; van Oordt T; Schneider EM; Zengerle R; von Stetten F; Luong JH
    Biosens Bioelectron; 2015 May; 67():248-55. PubMed ID: 25168283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-sensitive and high-efficient biochemical analysis method using a bionic electronic eye in combination with a smartphone-based colorimetric reader system.
    Kaiqi Su ; Quchao Zou ; Ning Hu ; Ping Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7720-3. PubMed ID: 26738081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of Colorimetric Data for Paper-Based Analytical Devices.
    Soda Y; Bakker E
    ACS Sens; 2019 Dec; 4(12):3093-3101. PubMed ID: 31744290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ultrasensitive method of real time pH monitoring with complementary metal oxide semiconductor image sensor.
    Devadhasan JP; Kim S
    Anal Chim Acta; 2015 Feb; 858():55-9. PubMed ID: 25597802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel systems solution for accurate colorimetric measurement through smartphone-based augmented reality.
    Zhang G; Song S; Panescu J; Shapiro N; Dannemiller KC; Qin R
    PLoS One; 2023; 18(6):e0287099. PubMed ID: 37319291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tools for water quality monitoring and mapping using paper-based sensors and cell phones.
    Sicard C; Glen C; Aubie B; Wallace D; Jahanshahi-Anbuhi S; Pennings K; Daigger GT; Pelton R; Brennan JD; Filipe CD
    Water Res; 2015 Mar; 70():360-9. PubMed ID: 25546358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Smartphone-Based Automatic Measurement Method for Colorimetric pH Detection Using a Color Adaptation Algorithm.
    Kim SD; Koo Y; Yun Y
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28698532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices.
    Lopez-Ruiz N; Curto VF; Erenas MM; Benito-Lopez F; Diamond D; Palma AJ; Capitan-Vallvey LF
    Anal Chem; 2014 Oct; 86(19):9554-62. PubMed ID: 25158126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein, enzyme and carbohydrate quantification using smartphone through colorimetric digitization technique.
    Dutta S; Saikia GP; Sarma DJ; Gupta K; Das P; Nath P
    J Biophotonics; 2017 May; 10(5):623-633. PubMed ID: 27243385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the reliability of smartphone-based urine colorimetry using a colour card calibration method.
    Noor Azhar M; Bustam A; Naseem FS; Shuin SS; Md Yusuf MH; Hishamudin NU; Poh K
    Digit Health; 2023; 9():20552076231154684. PubMed ID: 36798885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel smartphone-based CD-spectrometer for high sensitive and cost-effective colorimetric detection of ascorbic acid.
    Kong L; Gan Y; Liang T; Zhong L; Pan Y; Kirsanov D; Legin A; Wan H; Wang P
    Anal Chim Acta; 2020 Jan; 1093():150-159. PubMed ID: 31735208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a smartphone-based lateral-flow imaging system using machine-learning classifiers for detection of Salmonella spp.
    Min HJ; Mina HA; Deering AJ; Bae E
    J Microbiol Methods; 2021 Sep; 188():106288. PubMed ID: 34280431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.