These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 31766483)

  • 61. Non-enzymatic colorimetric detection of hydrogen peroxide using a μPAD coupled with a machine learning-based smartphone app.
    Doğan V; Yüzer E; Kılıç V; Şen M
    Analyst; 2021 Nov; 146(23):7336-7344. PubMed ID: 34766967
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Battery operated preconcentration-assisted lateral flow assay.
    Kim C; Yoo YK; Han SI; Lee J; Lee D; Lee K; Hwang KS; Lee KH; Chung S; Lee JH
    Lab Chip; 2017 Jul; 17(14):2451-2458. PubMed ID: 28613296
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Clinical chemistry measurements with commercially available test slides on a smartphone platform: Colorimetric determination of glucose and urea.
    Wu Y; Boonloed A; Sleszynski N; Koesdjojo M; Armstrong C; Bracha S; Remcho VT
    Clin Chim Acta; 2015 Aug; 448():133-8. PubMed ID: 26102280
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Accuracy of smartphone camera urine photo colorimetry as indicators of dehydration.
    Bustam A; Poh K; Shuin Soo S; Naseem FS; Md Yusuf MH; Hishamudin NU; Azhar MN
    Digit Health; 2023; 9():20552076231197961. PubMed ID: 37662675
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Direct minimally invasive enzymatic determination of tyramine in cheese using digital imaging.
    Oliver S; de Marcos S; Sanz-Vicente I; Cebolla V; Galbán J
    Anal Chim Acta; 2021 Jun; 1164():338489. PubMed ID: 33992221
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone.
    Lin B; Yu Y; Cao Y; Guo M; Zhu D; Dai J; Zheng M
    Biosens Bioelectron; 2018 Feb; 100():482-489. PubMed ID: 28965053
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Anthocyanin-based sensors derived from food waste as an active use-by date indicator for milk.
    Weston M; Phan MAT; Arcot J; Chandrawati R
    Food Chem; 2020 Oct; 326():127017. PubMed ID: 32434111
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Automated tongue diagnosis on the smartphone and its applications.
    Hu MC; Lan KC; Fang WC; Huang YC; Ho TJ; Lin CP; Yeh MH; Raknim P; Lin YH; Cheng MH; He YT; Tseng KC
    Comput Methods Programs Biomed; 2019 Jun; 174():51-64. PubMed ID: 29307471
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Quantitative pH Determination Based on the Dominant Wavelength Analysis of Commercial Test Strips.
    Li H; Wang X; Li X; Yu HZ
    Anal Chem; 2021 Nov; 93(46):15452-15458. PubMed ID: 34762419
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Efficient color correction method for smartphone camera-based health monitoring application.
    Duc Dang ; Chae Ho Cho ; Daeik Kim ; Oh Seok Kwon ; Jo Woon Chong
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():799-802. PubMed ID: 29059993
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A remote computing based point-of-care colorimetric detection system with a smartphone under complex ambient light conditions.
    Bao X; Jiang S; Wang Y; Yu M; Han J
    Analyst; 2018 Mar; 143(6):1387-1395. PubMed ID: 29451280
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Simple geometrical modifications for substantial color intensity and detection limit enhancements in lateral-flow immunochromatographic assays.
    Zadehkafi A; Siavashi M; Asiaei S; Bidgoli MR
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Mar; 1110-1111():1-8. PubMed ID: 30772779
    [TBL] [Abstract][Full Text] [Related]  

  • 73. RGBradford: Accurate measurement of protein concentration using a smartphone camera and the blue to green intensity ratio.
    Moreira DC
    Anal Biochem; 2022 Oct; 655():114839. PubMed ID: 35987416
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Color rendering map: a graphical metric for assessment of illumination.
    Quintero JM; Sudrià A; Hunt CE; Carreras J
    Opt Express; 2012 Feb; 20(5):4939-56. PubMed ID: 22418299
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Smartphone-based colorimetric detection of glutathione.
    Vobornikova I; Pohanka M
    Neuro Endocrinol Lett; 2016 Dec; 37(Suppl1):139-143. PubMed ID: 28263542
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Smartphone-Based Disposable Hemoglobin Sensor Based on Colorimetric Analysis.
    Meng Z; Tayyab M; Lin Z; Raji H; Javanmard M
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616992
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDMS chips.
    Petryayeva E; Algar WR
    Analyst; 2015 Jun; 140(12):4037-45. PubMed ID: 25924885
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Smartphone-Enabled Quantification of Potassium in Blood Plasma.
    Hidayat AS; Horino H; Rzeznicka II
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300494
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection.
    Carrio A; Sampedro C; Sanchez-Lopez JL; Pimienta M; Campoy P
    Sensors (Basel); 2015 Nov; 15(11):29569-93. PubMed ID: 26610513
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A smartphone readout system for gold nanoparticle-based lateral flow assays: application to monitoring of digoxigenin.
    Ruppert C; Phogat N; Laufer S; Kohl M; Deigner HP
    Mikrochim Acta; 2019 Jan; 186(2):119. PubMed ID: 30661134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.