These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 31766553)

  • 1. Mechanical Respond and Failure Mode of Large Size Honeycomb Sandwiched Composites under In-Plane Shear Load.
    Wang MN; Wang B; Liu C; Zhang G; Wan Y; Zhang F
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31766553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the shear buckling load of a large polymer composite I-section using strain and displacement sensors.
    Park JY; Lee JW
    Sensors (Basel); 2012 Nov; 12(12):16024-36. PubMed ID: 23443364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Studies on Failure Mechanisms of All-Composite Sandwich Structure with Honeycomb Core under Compression and Impact Loading Conditions.
    Han X; Cai H; Sun J; Wei Z; Huang Y; Wang A
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear versus micro-shear bond strength test: a finite element stress analysis.
    Placido E; Meira JB; Lima RG; Muench A; de Souza RM; Ballester RY
    Dent Mater; 2007 Sep; 23(9):1086-92. PubMed ID: 17123595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical investigations into the influence of the position of a breaking line on the tensile failure of flat, round, bevel-edged tablets using finite element methodology (FEM) and its practical relevance for industrial tablet strength testing.
    Podczeck F; Newton JM; Fromme P
    Int J Pharm; 2014 Dec; 477(1-2):306-16. PubMed ID: 25455775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation and Failure Behavior of Wooden Sandwich Composites with Taiji Honeycomb Core under a Three-Point Bending Test.
    Hao J; Wu X; Oporto G; Wang J; Dahle G; Nan N
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30463223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional finite element analysis of the shear bond test.
    DeHoff PH; Anusavice KJ; Wang Z
    Dent Mater; 1995 Mar; 11(2):126-31. PubMed ID: 8621033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experiment and Numerical Simulation for the Compressive Buckling Behavior of Double-Sided Laser-Welded Al-Li Alloy Aircraft Fuselage Panel.
    Zhang Y; Tao W; Chen Y; Lei Z; Bai R; Lei Z
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32823948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representative Cell Analysis for Damage-Based Failure Model of Polymer Hexagonal Honeycomb Structure under the Out-of-Plane Loadings.
    Khan MS; Abdul-Latif A; Koloor SSR; Petrů M; Tamin MN
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33375598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Study on the In-Plane Shear-after-Impact Properties of CFRP Composite Laminates.
    Liu L; Xu W
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology.
    Podczeck F; Drake KR; Newton JM
    Int J Pharm; 2013 Sep; 454(1):412-24. PubMed ID: 23834836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bending strength of tablets with a breaking line--Comparison of the results of an elastic and a "brittle cracking" finite element model with experimental findings.
    Podczeck F; Newton JM; Fromme P
    Int J Pharm; 2015 Nov; 495(1):485-499. PubMed ID: 26363109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of finite element analysis in dental ceramics research.
    Lang LA; Wang RF; Kang B; White SN
    J Prosthet Dent; 2001 Dec; 86(6):650-4. PubMed ID: 11753319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Analysis of Micro-Scale Deformation and Fracture of Carbonized Elastomer-Based Composites by In Situ SEM.
    Statnik ES; Ignatyev SD; Stepashkin AA; Salimon AI; Chukov D; Kaloshkin SD; Korsunsky AM
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33499359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds.
    Miranda P; Pajares A; Guiberteau F
    Acta Biomater; 2008 Nov; 4(6):1715-24. PubMed ID: 18583207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
    Wolfram U; Gross T; Pahr DH; Schwiedrzik J; Wilke HJ; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():218-28. PubMed ID: 23159819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Face Damage Growth of Sandwich Composites under Compressive Loading: Experiments, Analytical and Finite Element Modeling.
    Kinawy M; Rubino F; Canale G; Citarella R; Butler R
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Interlaminar Shear Properties of Fibre-Reinforced Composites under Biaxial Loading: A New Experimental Approach.
    Guseinov K; Kudryavtsev O; Bezmelnitsyn A; Sapozhnikov S
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural geometries and mechanical properties of vertebral implant with honeycomb sandwich structure for vertebral compression fractures: a finite element analysis.
    Guo Y; Liu J; Zhang X; Xing Z; Chen W; Huang D
    Biomed Eng Online; 2021 Oct; 20(1):96. PubMed ID: 34600551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of bone strength by μCT and MDCT-based finite-element-models: how much spatial resolution is needed?
    Bauer JS; Sidorenko I; Mueller D; Baum T; Issever AS; Eckstein F; Rummeny EJ; Link TM; Raeth CW
    Eur J Radiol; 2014 Jan; 83(1):e36-42. PubMed ID: 24274992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.