These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31766633)

  • 1. On The Influence of Rotary Dresser Geometry on Wear Evolution and Grinding Process.
    Godino L; Alvarez J; Muñoz A; Pombo I
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31766633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Electroplated CBN Wheel Wear on Grinding Surface Morphology of Powder Metallurgy Superalloy FGH96.
    Wang H; Li X; Wang Z; Xu R
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32102253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On modelling the interaction between two rotating bodies with statistically distributed features: an application to dressing of grinding wheels.
    Spampinato A; Axinte DA
    Proc Math Phys Eng Sci; 2017 Dec; 473(2208):20170466. PubMed ID: 29290732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dressing Tool Condition Monitoring through Impedance-Based Sensors: Part 1-PZT Diaphragm Transducer Response and EMI Sensing Technique.
    Junior P; D'Addona DM; Aguiar PR
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30558373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the CBN Wheel Wear Mechanism of Longitudinal-Torsional Ultrasonic-Assisted Grinding Applied to TC4 Titanium Alloy.
    Liu J; Liu Z; Yan Y; Wang X
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probabilistic Aspects of Modeling and Analysis of Grinding Wheel Wear.
    Kacalak W; Lipiński D; Szafraniec F; Banaszek K; Rypina Ł
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grinding Force and Surface Formation Mechanisms of 17CrNi2MoVNb Alloy When Grinding with CBN and Alumina Wheels.
    Jiang X; Liu K; Si M; Li M; Gong P
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and Precise Grinding of Sapphire Glass Based on Dry Electrical Discharge Dressed Coarse Diamond Grinding Wheel.
    Lu Y; Luo W; Wu X; Zhou C; Xu B; Zhao H; Li L
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31546823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine for fabricating axially symmetric concave aspherics.
    Hashimoto H
    Appl Opt; 1973 Jul; 12(7):1717-20. PubMed ID: 20125587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of diamond wheel topography in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire using fractal analysis method.
    Wang Q; Zhao W; Liang Z; Wang X; Zhou T; Wu Y; Jiao L
    Ultrasonics; 2018 Mar; 84():87-95. PubMed ID: 29096190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the Axial Profile of a Ceramic Grinding Wheel on Selected Roughness Parameters of Shaped Surfaces Obtained in the Grinding Process with a Dual-Tool Grinding Head.
    Jaskólski P; Sutowska M; Zawadka W; Malorny W; Rokosz K; Nadolny K
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methodology of evaluation of abrasive tool wear with the use of laser scanning microscopy.
    Lipiński D; Kacalak W; Tomkowski R
    Scanning; 2014; 36(1):53-63. PubMed ID: 23592189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating Grinding Mechanism by Theoretical and Experimental Investigations.
    Ullah AS; Caggiano A; Kubo A; Chowdhury MAK
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29425160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wear-adaptive optimization of in-process conditioning parameters during face plunge grinding of PcBN.
    Denkena B; Krödel-Worbes A; Müller-Cramm D
    Sci Rep; 2022 Jan; 12(1):1012. PubMed ID: 35046500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grinding Wheel Loading Evaluation by Using Acoustic Emission Signals and Digital Image Processing.
    Liu CS; Ou YJ
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32708041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Grinding Passes and Direction on Material Removal Behaviours in the Rail Grinding Process.
    Zhang S; Zhou K; Ding H; Guo J; Liu Q; Wang W
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30445757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technological Aspects of Variation in Process Characteristics and Tool Condition in Grinding Process Diagnostics.
    Kacalak W; Lipiński D; Szafraniec F; Wieczorowski M; Twardowski P
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tool Wear Mechanism and Grinding Performance for Different Cooling-Lubrication Modes in Grinding of Nickel-Based Superalloys.
    Liang C; Gong Y; Zhou L; Qi Y; Zhang H; Zhao J
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning-Based Feature Extraction of Acoustic Emission Signals for Monitoring Wear of Grinding Wheels.
    González D; Alvarez J; Sánchez JA; Godino L; Pombo I
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroplating a miniature diamond wheel for grinding of the calcified plaque inside arteries.
    Lyu JJ; Liu Y; Gurm HS; Shih A; Zheng Y
    Med Eng Phys; 2023 Mar; 113():103969. PubMed ID: 36966003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.