These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 31766673)
1. Studies on Possible Ion-Confinement in Nanopore for Enhanced Supercapacitor Performance in 4V EMIBF Deng J; Li J; Xiao Z; Song S; Li L Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31766673 [TBL] [Abstract][Full Text] [Related]
2. Electrolyte-Dependent Supercapacitor Performance on Nitrogen-Doped Porous Bio-Carbon from Gelatin. Deng J; Li J; Song S; Zhou Y; Li L Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32085553 [TBL] [Abstract][Full Text] [Related]
3. Unraveling the Capacitive Behaviors in Nanoconfined Ionophilic Carbon Pores. Li X; Cai C; Zhou L; Mai L; Fan HJ Adv Mater; 2024 Sep; 36(39):e2404393. PubMed ID: 39128130 [TBL] [Abstract][Full Text] [Related]
4. Horn-like Pore Entrance Boosts Charging Dynamics and Charge Storage of Nanoporous Supercapacitors. Mo T; Peng J; Dai W; Chen M; Presser V; Feng G ACS Nano; 2023 Aug; 17(15):14974-14980. PubMed ID: 37498344 [TBL] [Abstract][Full Text] [Related]
5. Capacitive energy storage in nanostructured carbon-electrolyte systems. Simon P; Gogotsi Y Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843 [TBL] [Abstract][Full Text] [Related]
6. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes? Lian C; Liu H; Henderson D; Wu J J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561 [TBL] [Abstract][Full Text] [Related]
7. Large Variations in the Composition of Ionic Liquid-Solvent Mixtures in Nanoscale Confinement. Fang A; Smolyanitsky A ACS Appl Mater Interfaces; 2019 Jul; 11(30):27243-27250. PubMed ID: 31287650 [TBL] [Abstract][Full Text] [Related]
8. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Mourad E; Coustan L; Lannelongue P; Zigah D; Mehdi A; Vioux A; Freunberger SA; Favier F; Fontaine O Nat Mater; 2017 Apr; 16(4):446-453. PubMed ID: 27893725 [TBL] [Abstract][Full Text] [Related]
9. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes. Vatamanu J; Vatamanu M; Bedrov D ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979 [TBL] [Abstract][Full Text] [Related]
10. Dynamic Charge Storage in Ionic Liquids-Filled Nanopores: Insight from a Computational Cyclic Voltammetry Study. He Y; Huang J; Sumpter BG; Kornyshev AA; Qiao R J Phys Chem Lett; 2015 Jan; 6(1):22-30. PubMed ID: 26263086 [TBL] [Abstract][Full Text] [Related]
11. Carbons and electrolytes for advanced supercapacitors. Béguin F; Presser V; Balducci A; Frackowiak E Adv Mater; 2014 Apr; 26(14):2219-51, 2283. PubMed ID: 24497347 [TBL] [Abstract][Full Text] [Related]
12. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes. Zhong H; Xu F; Li Z; Fu R; Wu D Nanoscale; 2013 Jun; 5(11):4678-82. PubMed ID: 23632802 [TBL] [Abstract][Full Text] [Related]
13. Ionic Liquid Mixture Electrolyte Matching Porous Carbon Electrodes for Supercapacitors. Zhao Y; Chen Y; Du Q; Zhuo K; Yang L; Sun D; Bai G Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295465 [TBL] [Abstract][Full Text] [Related]
14. The effect of ILs as co-salts in electrolytes for high voltage supercapacitors. Kwon HN; Jang SJ; Kang YC; Roh KC Sci Rep; 2019 Feb; 9(1):1180. PubMed ID: 30718616 [TBL] [Abstract][Full Text] [Related]
15. Molecular Insights into the Complex Relationship between Capacitance and Pore Morphology in Nanoporous Carbon-based Supercapacitors. Pak AJ; Hwang GS ACS Appl Mater Interfaces; 2016 Dec; 8(50):34659-34667. PubMed ID: 27936557 [TBL] [Abstract][Full Text] [Related]
16. Theoretical Insights into the Structures and Capacitive Performances of Confined Ionic Liquids. Yang J; Ding Y; Lian C; Ying S; Liu H Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32213943 [TBL] [Abstract][Full Text] [Related]
17. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Chmiola J; Yushin G; Gogotsi Y; Portet C; Simon P; Taberna PL Science; 2006 Sep; 313(5794):1760-3. PubMed ID: 16917025 [TBL] [Abstract][Full Text] [Related]
18. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Futamura R; Iiyama T; Takasaki Y; Gogotsi Y; Biggs MJ; Salanne M; Ségalini J; Simon P; Kaneko K Nat Mater; 2017 Dec; 16(12):1225-1232. PubMed ID: 28920938 [TBL] [Abstract][Full Text] [Related]
19. Effects of Confinement and Ion Adsorption in Ionic Liquid Supercapacitors with Nanoporous Electrodes. Lian Z; Chao H; Wang ZG ACS Nano; 2021 Jul; 15(7):11724-11733. PubMed ID: 34228448 [TBL] [Abstract][Full Text] [Related]
20. Boosted Supercapacitive Energy with High Rate Capability of aCarbon Framework with Hierarchical Pore Structure in an Ionic Liquid. Wang X; Zhou H; Lou F; Li Y; Buan ME; Duan X; Walmsley JC; Sheridan E; Chen D ChemSusChem; 2016 Nov; 9(21):3093-3101. PubMed ID: 27754604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]