These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 31766700)
1. Correlations of Ion Composition and Power Efficiency in a Reverse Electrodialysis Heat Engine. Luo F; Wang Y; Sha M; Wei Y Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31766700 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. Yip NY; Vermaas DA; Nijmeijer K; Elimelech M Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542 [TBL] [Abstract][Full Text] [Related]
3. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis. Yip NY; Elimelech M Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687 [TBL] [Abstract][Full Text] [Related]
4. The Effect of Feed Solution Temperature on the Power Output Performance of a Pilot-Scale Reverse Electrodialysis (RED) System with Different Intermediate Distance. Mehdizadeh S; Yasukawa M; Abo T; Kuno M; Noguchi Y; Higa M Membranes (Basel); 2019 Jun; 9(6):. PubMed ID: 31216734 [TBL] [Abstract][Full Text] [Related]
5. Response of salinity gradient power generation to inflow mode and temperature difference by reverse electrodialysis. Cui WZ; Ji ZY; Tumba K; Zhang ZD; Wang J; Zhang ZX; Liu J; Zhao YY; Yuan JS J Environ Manage; 2022 Feb; 303():114124. PubMed ID: 34839173 [TBL] [Abstract][Full Text] [Related]
6. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant. Veerman J; Saakes M; Metz SJ; Harmsen GJ Environ Sci Technol; 2010 Dec; 44(23):9207-12. PubMed ID: 20964356 [TBL] [Abstract][Full Text] [Related]
7. Power Generation Performance of Reverse Electrodialysis (RED) Using Various Ion Exchange Membranes and Power Output Prediction for a Large RED Stack. Sugimoto Y; Ujike R; Higa M; Kakihana Y; Higa M Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422133 [TBL] [Abstract][Full Text] [Related]
8. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis. Wang S; Sun Z; Ahmad M; Fu W; Gao Z Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325 [TBL] [Abstract][Full Text] [Related]
9. Active Control of Irreversible Faradic Reactions to Enhance the Performance of Reverse Electrodialysis for Energy Production from Salinity Gradients. Oh Y; Han JH; Kim H; Jeong N; Vermaas DA; Park JS; Chae S Environ Sci Technol; 2021 Aug; 55(16):11388-11396. PubMed ID: 34310128 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Ionic Conductivity and Power Generation Using Ion-Exchange Resin Beads in a Reverse-Electrodialysis Stack. Zhang B; Gao H; Chen Y Environ Sci Technol; 2015 Dec; 49(24):14717-24. PubMed ID: 26560232 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen generation in microbial reverse-electrodialysis electrolysis cells using a heat-regenerated salt solution. Nam JY; Cusick RD; Kim Y; Logan BE Environ Sci Technol; 2012 May; 46(9):5240-6. PubMed ID: 22463373 [TBL] [Abstract][Full Text] [Related]
12. Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater. Li Y; Shi S; Cao H; Wu X; Zhao Z; Wang L Water Res; 2016 Feb; 89():201-9. PubMed ID: 26674548 [TBL] [Abstract][Full Text] [Related]
13. Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis. Guler E; Zhang Y; Saakes M; Nijmeijer K ChemSusChem; 2012 Nov; 5(11):2262-70. PubMed ID: 23109486 [TBL] [Abstract][Full Text] [Related]
14. CO Moreno J; de Hart N; Saakes M; Nijmeijer K Water Res; 2017 Nov; 125():23-31. PubMed ID: 28834766 [TBL] [Abstract][Full Text] [Related]
15. Scale-up of reverse electrodialysis for energy generation from high concentration salinity gradients. Hulme AM; Davey CJ; Tyrrel S; Pidou M; McAdam EJ J Memb Sci; 2021 Jun; 627():119245. PubMed ID: 34083864 [TBL] [Abstract][Full Text] [Related]
16. Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes. Mehdizadeh S; Kakihana Y; Abo T; Yuan Q; Higa M Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33401447 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Pretreatment Methods for Salinity Gradient Power Generation Using Reverse Electrodialysis (RED) Systems. Ju J; Choi Y; Lee S; Park CG; Hwang T; Jung N Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448343 [TBL] [Abstract][Full Text] [Related]
18. Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis. Besha AT; Tsehaye MT; Aili D; Zhang W; Tufa RA Membranes (Basel); 2019 Dec; 10(1):. PubMed ID: 31906203 [TBL] [Abstract][Full Text] [Related]
19. Renewable Power Generation by Reverse Electrodialysis Using an Ion Exchange Membrane. Chanda S; Tsai PA Membranes (Basel); 2021 Oct; 11(11):. PubMed ID: 34832059 [TBL] [Abstract][Full Text] [Related]
20. Use of the Microheterogeneous Model to Assess the Applicability of Ion-Exchange Membranes in the Process of Generating Electricity from a Concentration Gradient. Davydov D; Nosova E; Loza S; Achoh A; Korzhov A; Sharafan M; Melnikov S Membranes (Basel); 2021 May; 11(6):. PubMed ID: 34071631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]