BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31766717)

  • 21. Enhanced power conversion efficiency of dye-sensitized solar cells using nanoparticle/nanotube double layered film.
    Sun KC; Yun SH; Yoon CH; Ko HH; Yi S; Jeong SH
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7938-43. PubMed ID: 24266168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of High Efficiency Dye-Sensitized Solar Cells Based on TiO2 Nanoparticles Embedded in Ti Substrate.
    Kim KP; Lee SJ; Hwang DK; Kim DH; Heo YW
    J Nanosci Nanotechnol; 2015 Jan; 15(1):241-3. PubMed ID: 26328339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile Fabrication of Plasmonic Enhanced Noble-Metal-Decorated ZnO Nanowire Arrays for Dye-Sensitized Solar Cells.
    Tan WK; Muto H; Ito T; Kawamura G; Lockman Z; Matsuda A
    J Nanosci Nanotechnol; 2020 Jan; 20(1):359-366. PubMed ID: 31383179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bimetallic Implanted Plasmonic Photoanodes for TiO
    Kaur N; Bhullar V; Singh DP; Mahajan A
    Sci Rep; 2020 May; 10(1):7657. PubMed ID: 32376842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic-resonance-based ternary composite complementary enhancement of the performance of dye-sensitized solar cells.
    Bai L; Li M; Liu X; Luoshan M; Zhang F; Guo K; Zhu Y; Sun B; Zhao X
    Nanotechnology; 2016 Oct; 27(41):415202. PubMed ID: 27595326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Betavoltaic Enhancement Using Defect-Engineered TiO
    Ma Y; Wang N; Chen J; Chen C; San H; Chen J; Cheng Z
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22174-22181. PubMed ID: 29882646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of plasmonic dye-sensitized solar cells using ion-implanted photoanodes.
    Kaur N; Mahajan A; Bhullar V; Singh DP; Saxena V; Debnath AK; Aswal DK; Devi D; Singh F; Chopra S
    RSC Adv; 2019 Jun; 9(35):20375-20384. PubMed ID: 35514719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supercapacitive performance of
    Wang L; Li P; Yang J; Ma Z; Zhang L
    Phys Chem Chem Phys; 2023 Apr; 25(14):10063-10070. PubMed ID: 36970990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of shell thickness of Au@TiO2 core-shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells.
    Liu WL; Lin FC; Yang YC; Huang CH; Gwo S; Huang MH; Huang JS
    Nanoscale; 2013 Sep; 5(17):7953-62. PubMed ID: 23860734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic dye-sensitized solar cells through collapsible gold nanofingers.
    Fang W; Hu P; Wu Z; Xiao Y; Sui Y; Pan D; Su G; Zhu M; Zhan P; Liu F; Wu W
    Nanotechnology; 2021 Jun; 32(35):. PubMed ID: 34034240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of TiO2 nanotube/nanoparticle composite particles and their applications in dye-sensitized solar cells.
    Lee CH; Rhee SW; Choi HW
    Nanoscale Res Lett; 2012 Jan; 7(1):48. PubMed ID: 22222095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of plasmonic gold-silica core-shell nanoparticle stability in dye-sensitized solar cell applications.
    Törngren B; Akitsu K; Ylinen A; Sandén S; Jiang H; Ruokolainen J; Komatsu M; Hamamura T; Nakazaki J; Kubo T; Segawa H; Österbacka R; Smått JH
    J Colloid Interface Sci; 2014 Aug; 427():54-61. PubMed ID: 24388614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells.
    Kawamura G; Ohmi H; Tan WK; Lockman Z; Muto H; Matsuda A
    Nanoscale Res Lett; 2015; 10():219. PubMed ID: 26019696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-efficiency dye-sensitized solar cells based on robust and both-end-open TiO2 nanotube membranes.
    Lin J; Chen J; Chen X
    Nanoscale Res Lett; 2011 Jul; 6(1):475. PubMed ID: 21794157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced photovoltaic properties of dye-sensitized solar cells using three-component CNF/TiO
    Lu D; Li J; Lu G; Qin L; Liu D; Sun P; Liu F; Lu G
    J Colloid Interface Sci; 2019 Apr; 542():168-176. PubMed ID: 30738309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of Y123 dye-sensitized solar cell performance using plasmonic gold nanorods.
    Chandrasekhar PS; Parashar PK; Swami SK; Dutta V; Komarala VK
    Phys Chem Chem Phys; 2018 Apr; 20(14):9651-9658. PubMed ID: 29582021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High Performance Dye-Sensitized Solar Cells with Enhanced Light-Harvesting Efficiency Based on Polyvinylpyrrolidone-Coated Au-TiO2 Microspheres.
    Ding Y; Sheng J; Yang Z; Jiang L; Mo L; Hu L; Que Y; Dai S
    ChemSusChem; 2016 Apr; 9(7):720-7. PubMed ID: 26915757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Gold Nanoparticle Distribution in TiO
    Mayumi S; Ikeguchi Y; Nakane D; Ishikawa Y; Uraoka Y; Ikeguchi M
    Nanoscale Res Lett; 2017 Aug; 12(1):513. PubMed ID: 28853056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics of Dye-Sensitized Solar Cells with TiO
    Lai WF; Chao PL; Lin XY; Chen YP; Liu JH; Lin TF; Hsu WC; Huang CY
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Freestanding aligned carbon nanotube array grown on a large-area single-layered graphene sheet for efficient dye-sensitized solar cell.
    Qiu L; Wu Q; Yang Z; Sun X; Zhang Y; Peng H
    Small; 2015 Mar; 11(9-10):1150-5. PubMed ID: 24889384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.