These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31766717)

  • 61. Synthesis of Au-SiO2 asymmetric clusters and their application in ZnO nanosheet-based dye-sensitized solar cells.
    Li H; Yuan K; Zhang Y; Wang J
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5601-8. PubMed ID: 23697666
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Preparation of Carbon-Doped TiO2 and Its Application as a Photoelectrodes in Dye-Sensitized Solar Cells.
    Park SK; Jeong JS; Yun TK; Bae JY
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1529-32. PubMed ID: 26353686
    [TBL] [Abstract][Full Text] [Related]  

  • 63. TiO2-grafted multi-walled carbon nanotubes for dye-sensitized solar cells.
    Hwang YH; Kim H; Zong K; Pyo M
    J Nanosci Nanotechnol; 2012 May; 12(5):4127-31. PubMed ID: 22852357
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of incorporation of TiO2 nanoparticles into oriented TiO2 nanotube based dye-sensitized solar cells.
    Shin K; Jun Y; Han GY; Park JH
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7436-9. PubMed ID: 19908804
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Photo-assisted synthesis of coaxial-structured polypyrrole/electrochemically hydrogenated TiO
    Liu J; Li J; Dai M; Hu Y; Cui J; Wang Y; Tan HH; Wu Y
    RSC Adv; 2018 Apr; 8(24):13393-13400. PubMed ID: 35542528
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes.
    Wang H; Liu M; Zhang M; Wang P; Miura H; Cheng Y; Bell J
    Phys Chem Chem Phys; 2011 Oct; 13(38):17359-66. PubMed ID: 21881630
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sol-Gel Processed TiO
    Tsvetkov N; Larina L; Ku Kang J; Shevaleevskiy O
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32050590
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optical modeling-assisted characterization of dye-sensitized solar cells using TiO2 nanotube arrays as photoanodes.
    Yun JH; Kim IK; Ng YH; Wang L; Amal R
    Beilstein J Nanotechnol; 2014; 5():895-902. PubMed ID: 24991527
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Large-diameter titanium dioxide nanotube arrays as a scattering layer for high-efficiency dye-sensitized solar cell.
    Liu X; Guo M; Cao J; Lin J; Tsang YH; Chen X; Huang H
    Nanoscale Res Lett; 2014; 9(1):362. PubMed ID: 25114652
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhanced conversion efficiency in dye-sensitized solar cells based on bilayered nano-composite photoanode film consisting of TiO2 nanoparticles and nanofibers.
    Du PF; Song LX; Xiong J
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4164-9. PubMed ID: 24738365
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode.
    Jang YH; Xin X; Byun M; Jang YJ; Lin Z; Kim DH
    Nano Lett; 2012 Jan; 12(1):479-85. PubMed ID: 22148913
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells.
    Li G; Richter CP; Milot RL; Cai L; Schmuttenmaer CA; Crabtree RH; Brudvig GW; Batista VS
    Dalton Trans; 2009 Dec; (45):10078-85. PubMed ID: 19904436
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Contributions of Ag Nanowires to the Photoelectric Conversion Efficiency Enhancement of TiO2 Dye-Sensitized Solar Cells.
    Liu Y; She G; Qi X; Mu L; Wang X; Shi W
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7068-73. PubMed ID: 26716285
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enhanced near-infrared to visible upconversion nanoparticles of Ho³⁺-Yb³⁺-F⁻ tri-doped TiO₂ and its application in dye-sensitized solar cells with 37% improvement in power conversion efficiency.
    Yu J; Yang Y; Fan R; Liu D; Wei L; Chen S; Li L; Yang B; Cao W
    Inorg Chem; 2014 Aug; 53(15):8045-53. PubMed ID: 25019645
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Plasmonic Effects of Metallic Nanoparticles on Enhancing Performance of Perovskite Solar Cells.
    Luo Q; Zhang C; Deng X; Zhu H; Li Z; Wang Z; Chen X; Huang S
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34821-34832. PubMed ID: 28929738
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Plasmon-Induced Broadband Light-Harvesting for Dye-Sensitized Solar Cells Using a Mixture of Gold Nanocrystals.
    Zhang Y; Sun Z; Cheng S; Yan F
    ChemSusChem; 2016 Apr; 9(8):813-9. PubMed ID: 27110902
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A strategy to enhance the efficiency of dye-sensitized solar cells by the highly efficient TiO2/ZnS photoanode.
    Srinivasa Rao S; Punnoose D; Venkata Tulasivarma Ch; Pavan Kumar CH; Gopi CV; Kim SK; Kim HJ
    Dalton Trans; 2015 Feb; 44(5):2447-55. PubMed ID: 25556975
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Plasmon-Enhanced Perovskite Solar Cells Based on Inkjet-Printed Au Nanoparticles Embedded into TiO
    Rubtsov S; Musin A; Danchuk V; Shatalov M; Prasad N; Zinigrad M; Yadgarov L
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836316
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Characteristics and Photovoltaic Applications of Au-Doped ZnO-Sm Nanoparticle Films.
    Saleem M; Irshad K; Ur Rehman S; Javed MS; Hasan MA; Ali HM; Ali A; Malik MZ; Islam S
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33799567
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Biosynthesis, characterization and optimization of TiO
    Metwally RA; El Nady J; Ebrahim S; El Sikaily A; El-Sersy NA; Sabry SA; Ghozlan HA
    Microb Cell Fact; 2023 Apr; 22(1):78. PubMed ID: 37085834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.