These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 31766754)
21. Modulating the Release Kinetics of Natural Product Actinomycin from Bacterial Nanocellulose Films and Their Antimicrobial Activity. Zimowska K; Filipovic V; Nikodinovic-Runic J; Simic J; Ilic-Tomic T; Zimowska M; Gurgul J; Ponjavic M Bioengineering (Basel); 2024 Aug; 11(8):. PubMed ID: 39199804 [TBL] [Abstract][Full Text] [Related]
22. Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Sharma C; Bhardwaj NK Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109963. PubMed ID: 31499992 [TBL] [Abstract][Full Text] [Related]
23. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Martínez Ávila H; Schwarz S; Feldmann EM; Mantas A; von Bomhard A; Gatenholm P; Rotter N Appl Microbiol Biotechnol; 2014 Sep; 98(17):7423-35. PubMed ID: 24866945 [TBL] [Abstract][Full Text] [Related]
24. Antimicrobial and Conductive Nanocellulose-Based Films for Active and Intelligent Food Packaging. Vilela C; Moreirinha C; Domingues EM; Figueiredo FML; Almeida A; Freire CSR Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31284559 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Fu L; Zhou P; Zhang S; Yang G Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2995-3000. PubMed ID: 23623124 [TBL] [Abstract][Full Text] [Related]
26. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels. Zhang P; Chen L; Zhang Q; Jönsson LJ; Hong FF Biotechnol Prog; 2016 Jul; 32(4):1077-84. PubMed ID: 27088548 [TBL] [Abstract][Full Text] [Related]
27. Bacterial nanocellulose loaded with bromelain and nisin as a promising bioactive material for wound debridement. Jančič U; Trček J; Verestiuc L; Vukomanović M; Gorgieva S Int J Biol Macromol; 2024 May; 266(Pt 2):131329. PubMed ID: 38574906 [TBL] [Abstract][Full Text] [Related]
28. Uptake of PHMB in a bacterial nanocellulose-based wound dressing: A feasible clinical procedure. de Mattos IB; Holzer JCJ; Tuca AC; Groeber-Becker F; Funk M; Popp D; Mautner S; Birngruber T; Kamolz LP Burns; 2019 Jun; 45(4):898-904. PubMed ID: 30509765 [TBL] [Abstract][Full Text] [Related]
29. Antimicrobial Formulation of a Bacterial Nanocellulose/Propolis-Containing Photosensitizer for Biomedical Applications. Gonçalves IS; Lima LR; Berretta AA; Amorim NA; Pratavieira S; Corrêa TQ; Nogueira FAR; Barud HS Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850271 [TBL] [Abstract][Full Text] [Related]
30. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties. Stanisławska A; Staroszczyk H; Szkodo M Carbohydr Polym; 2020 May; 236():116023. PubMed ID: 32172842 [TBL] [Abstract][Full Text] [Related]
31. Effect of the ex situ physical and in situ chemical modification of bacterial nanocellulose on mechanical properties in the context of its potential applications in heart valve design. Stanisławska A; Szkodo M; Staroszczyk H; Dawidowska K; Kołaczkowska M; Siondalski P Int J Biol Macromol; 2024 Jun; 269(Pt 1):131951. PubMed ID: 38710253 [TBL] [Abstract][Full Text] [Related]
32. Efficacy of Bacterial Nanocellulose in Hard Tissue Regeneration: A Review. Kumar A; Han SS Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500866 [TBL] [Abstract][Full Text] [Related]
33. Super-Repellent and Flexible Lubricant-Infused Bacterial Nanocellulose Membranes with Superior Antithrombotic, Antibacterial, and Fatigue Resistance Properties. Abdollahi S; Stephens ED; Uy MA; Fatehi Hassanabad A; Fedak PWM; Badv M ACS Appl Mater Interfaces; 2023 Jun; 15(22):26417-26430. PubMed ID: 37233979 [TBL] [Abstract][Full Text] [Related]
34. Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. Alkhatib Y; Dewaldt M; Moritz S; Nitzsche R; Kralisch D; Fischer D Eur J Pharm Biopharm; 2017 Mar; 112():164-176. PubMed ID: 27889415 [TBL] [Abstract][Full Text] [Related]
35. Bacterial Nanocellulose-Enhanced Alginate Double-Network Hydrogels Cross-Linked with Six Metal Cations for Antibacterial Wound Dressing. Shahriari-Khalaji M; Hong S; Hu G; Ji Y; Hong FF Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33202968 [TBL] [Abstract][Full Text] [Related]
36. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Ahrem H; Pretzel D; Endres M; Conrad D; Courseau J; Müller H; Jaeger R; Kaps C; Klemm DO; Kinne RW Acta Biomater; 2014 Mar; 10(3):1341-53. PubMed ID: 24334147 [TBL] [Abstract][Full Text] [Related]
37. A turning point in the bacterial nanocellulose production employing low doses of gamma radiation. Al-Hagar OEA; Abol-Fotouh D Sci Rep; 2022 Apr; 12(1):7012. PubMed ID: 35488046 [TBL] [Abstract][Full Text] [Related]
38. Mitigated reactive oxygen species generation leads to an improvement of cell proliferation on poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] functionalized polydimethylsiloxane surfaces. Yu L; Shi Z; Gao L; Li C J Biomed Mater Res A; 2015 Sep; 103(9):2987-97. PubMed ID: 25711883 [TBL] [Abstract][Full Text] [Related]