These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 31767405)

  • 1. Mass spectrometry-based Cellular Thermal Shift Assay (CETSA®) for target deconvolution in phenotypic drug discovery.
    Friman T
    Bioorg Med Chem; 2020 Jan; 28(1):115174. PubMed ID: 31767405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products.
    Tu Y; Tan L; Tao H; Li Y; Liu H
    Phytomedicine; 2023 Jul; 116():154862. PubMed ID: 37216761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Horizontal Cell Biology: Monitoring Global Changes of Protein Interaction States with the Proteome-Wide Cellular Thermal Shift Assay (CETSA).
    Dai L; Prabhu N; Yu LY; Bacanu S; Ramos AD; Nordlund P
    Annu Rev Biochem; 2019 Jun; 88():383-408. PubMed ID: 30939043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Advances in CETSA.
    Tolvanen TA
    Front Mol Biosci; 2022; 9():866764. PubMed ID: 35755818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CETSA in integrated proteomics studies of cellular processes.
    Prabhu N; Dai L; Nordlund P
    Curr Opin Chem Biol; 2020 Feb; 54():54-62. PubMed ID: 31838273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target Engagement of Small Molecules: Thermal Profiling Approaches on Different Levels.
    Reckzeh ES; Brockmeyer A; Metz M; Waldmann H; Janning P
    Methods Mol Biol; 2019; 1888():73-98. PubMed ID: 30519941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target deconvolution from phenotype-based drug discovery by using chemical proteomics approaches.
    Kubota K; Funabashi M; Ogura Y
    Biochim Biophys Acta Proteins Proteom; 2019 Jan; 1867(1):22-27. PubMed ID: 30392561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High-Throughput Dose-Response Cellular Thermal Shift Assay for Rapid Screening of Drug Target Engagement in Living Cells, Exemplified Using SMYD3 and IDO1.
    McNulty DE; Bonnette WG; Qi H; Wang L; Ho TF; Waszkiewicz A; Kallal LA; Nagarajan RP; Stern M; Quinn AM; Creasy CL; Su DS; Graves AP; Annan RS; Sweitzer SM; Holbert MA
    SLAS Discov; 2018 Jan; 23(1):34-46. PubMed ID: 28957646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Cellular Thermal Shift Assay: A Novel Biophysical Assay for In Situ Drug Target Engagement and Mechanistic Biomarker Studies.
    Martinez Molina D; Nordlund P
    Annu Rev Pharmacol Toxicol; 2016; 56():141-61. PubMed ID: 26566155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Cellular Thermal Shift Assays in Research and Drug Discovery.
    Henderson MJ; Holbert MA; Simeonov A; Kallal LA
    SLAS Discov; 2020 Feb; 25(2):137-147. PubMed ID: 31566060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive Measurement of Drug-Target Engagement by a Cellular Thermal Shift Assay with Multiplex Proximity Extension Readout.
    Al-Amin RA; Gallant CJ; Muthelo PM; Landegren U
    Anal Chem; 2021 Aug; 93(31):10999-11009. PubMed ID: 34319715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Cellular Thermal Shift Assay to Monitor Target Engagement.
    Sanchez TW; Ronzetti MH; Owens AE; Antony M; Voss T; Wallgren E; Talley D; Balakrishnan K; Leyes Porello SE; Rai G; Marugan JJ; Michael SG; Baljinnyam B; Southall N; Simeonov A; Henderson MJ
    ACS Chem Biol; 2022 Sep; 17(9):2471-2482. PubMed ID: 36049119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular thermal shift assay: an approach to identify and assess protein target engagement.
    Zhang L; Wang Y; Zheng C; Zhou Z; Chen Z
    Expert Rev Proteomics; 2024; 21(9-10):387-400. PubMed ID: 39317941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positioning High-Throughput CETSA in Early Drug Discovery through Screening against B-Raf and PARP1.
    Shaw J; Dale I; Hemsley P; Leach L; Dekki N; Orme JP; Talbot V; Narvaez AJ; Bista M; Martinez Molina D; Dabrowski M; Main MJ; Gianni D
    SLAS Discov; 2019 Feb; 24(2):121-132. PubMed ID: 30543471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perspective on CETSA Literature: Toward More Quantitative Data Interpretation.
    Seashore-Ludlow B; Axelsson H; Lundbäck T
    SLAS Discov; 2020 Feb; 25(2):118-126. PubMed ID: 31665966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional electrophoresis-cellular thermal shift assay (2DE-CETSA) for target identification of bioactive compounds.
    Muroi M; Osada H
    Methods Enzymol; 2022; 675():425-437. PubMed ID: 36220280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug Target Engagement Using Coupled Cellular Thermal Shift Assay-Acoustic Reverse-Phase Protein Array.
    Herledan A; Andres M; Lejeune-Dodge A; Leroux F; Biela A; Piveteau C; Warenghem S; Couturier C; Deprez B; Deprez-Poulain R
    SLAS Discov; 2020 Feb; 25(2):207-214. PubMed ID: 31885312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CETSA: a target engagement assay with potential to transform drug discovery.
    Jensen AJ; Martinez Molina D; Lundbäck T
    Future Med Chem; 2015; 7(8):975-8. PubMed ID: 26062395
    [No Abstract]   [Full Text] [Related]  

  • 19. A widely-applicable high-throughput cellular thermal shift assay (CETSA) using split Nano Luciferase.
    Martinez NJ; Asawa RR; Cyr MG; Zakharov A; Urban DJ; Roth JS; Wallgren E; Klumpp-Thomas C; Coussens NP; Rai G; Yang SM; Hall MD; Marugan JJ; Simeonov A; Henderson MJ
    Sci Rep; 2018 Jun; 8(1):9472. PubMed ID: 29930256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring structural modulation of redox-sensitive proteins in cells with MS-CETSA.
    Sun W; Dai L; Yu H; Puspita B; Zhao T; Li F; Tan JL; Lim YT; Chen MW; Sobota RM; Tenen DG; Prabhu N; Nordlund P
    Redox Biol; 2019 Jun; 24():101168. PubMed ID: 30925293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.