These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31767430)

  • 1. Volatile fatty acid production from semi-synthetic milk processing wastewater under alkali pH: The pearls and pitfalls of microbial culture.
    Atasoy M; Eyice Ö; Cetecioglu Z
    Bioresour Technol; 2020 Feb; 297():122415. PubMed ID: 31767430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioaugmented Mixed Culture by
    Atasoy M; Cetecioglu Z
    Front Microbiol; 2021; 12():658494. PubMed ID: 34539589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.
    Zhang Y; Angelidaki I
    Water Res; 2015 Sep; 81():188-95. PubMed ID: 26057718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volatile fatty acids production via mixed culture fermentation: Revealing the link between pH, inoculum type and bacterial composition.
    Atasoy M; Eyice O; Schnürer A; Cetecioglu Z
    Bioresour Technol; 2019 Nov; 292():121889. PubMed ID: 31394468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaugmentation as a strategy for tailor-made volatile fatty acid production.
    Atasoy M; Cetecioglu Z
    J Environ Manage; 2021 Oct; 295():113093. PubMed ID: 34167052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of pH on the production of volatile fatty acids and microbial dynamics in long-term reactor operation.
    Atasoy M; Cetecioglu Z
    J Environ Manage; 2022 Oct; 319():115700. PubMed ID: 35982552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile fatty acid production from saline cooked mussel processing wastewater at low pH.
    Fra-Vázquez A; Pedrouso A; Val Del Rio A; Mosquera-Corral A
    Sci Total Environ; 2020 Aug; 732():139337. PubMed ID: 32438163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition.
    Cheah YK; Dosta J; Mata-Álvarez J
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31426488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges.
    Atasoy M; Owusu-Agyeman I; Plaza E; Cetecioglu Z
    Bioresour Technol; 2018 Nov; 268():773-786. PubMed ID: 30030049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive study of volatile fatty acids production from batch reactor to anaerobic sequencing batch reactor by using cheese processing wastewater.
    Atasoy M; Eyice O; Cetecioglu Z
    Bioresour Technol; 2020 Sep; 311():123529. PubMed ID: 32428848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of volatile fatty acids from wastewater screenings using a leach-bed reactor.
    Cadavid-Rodríguez LS; Horan NJ
    Water Res; 2014 Sep; 60():242-249. PubMed ID: 24862954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oleaginous yeast
    Gao R; Li Z; Zhou X; Cheng S; Zheng L
    Biotechnol Biofuels; 2017; 10():247. PubMed ID: 29093751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of initial pH on the production of volatile fatty acids and hydrogen during dark fermentation of kitchen waste.
    Slezak R; Grzelak J; Krzystek L; Ledakowicz S
    Environ Technol; 2021 Nov; 42(27):4269-4278. PubMed ID: 32255721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective production of volatile fatty acids at different pH in an anaerobic membrane bioreactor.
    Khan MA; Ngo HH; Guo W; Chang SW; Nguyen DD; Varjani S; Liu Y; Deng L; Cheng C
    Bioresour Technol; 2019 Jul; 283():120-128. PubMed ID: 30901584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici.
    Chen Y; Li X; Zheng X; Wang D
    Water Res; 2013 Feb; 47(2):615-22. PubMed ID: 23219005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH.
    Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The capture technology matters: Composition of municipal wastewater solids drives complexity of microbial community structure and volatile fatty acid profile during anaerobic fermentation.
    Brison A; Rossi P; Gelb A; Derlon N
    Sci Total Environ; 2022 Apr; 815():152762. PubMed ID: 34990680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pH on volatile fatty acid production from anaerobic digestion of potato peel waste.
    Lu Y; Zhang Q; Wang X; Zhou X; Zhu J
    Bioresour Technol; 2020 Nov; 316():123851. PubMed ID: 32738559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of propionic acid-enriched volatile fatty acids from co-fermentation liquid of sewage sludge and food waste using Propionibacterium acidipropionici.
    Li X; Mu H; Chen Y; Zheng X; Luo J; Zhao S
    Water Sci Technol; 2013; 68(9):2061-6. PubMed ID: 24225109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inoculation and alkali coeffect in volatile fatty acids production and microbial community shift in the anaerobic fermentation of waste activated sludge.
    Huang L; Chen B; Pistolozzi M; Wu Z; Wang J
    Bioresour Technol; 2014 Feb; 153():87-94. PubMed ID: 24345567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.