These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 31767457)
1. Effects of different metal ions (Ca, Cu, Pb, Cd) on formation of cyanobacterial blooms. Gu P; Li Q; Zhang W; Zheng Z; Luo X Ecotoxicol Environ Saf; 2020 Feb; 189():109976. PubMed ID: 31767457 [TBL] [Abstract][Full Text] [Related]
2. Effects and control of metal nutrients and species on Microcystis aeruginosa growth and bloom. Zhou H; Chen X; Liu X; Xuan Y; Hu T Water Environ Res; 2019 Jan; 91(1):21-31. PubMed ID: 30682229 [TBL] [Abstract][Full Text] [Related]
3. Growth inhibition of harmful cyanobacteria by nanocrystalline Cu-MOF-74: Efficiency and its mechanisms. Fan G; Bao M; Zheng X; Hong L; Zhan J; Chen Z; Qu F J Hazard Mater; 2019 Apr; 367():529-538. PubMed ID: 30641423 [TBL] [Abstract][Full Text] [Related]
4. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Paerl HW; Xu H; McCarthy MJ; Zhu G; Qin B; Li Y; Gardner WS Water Res; 2011 Feb; 45(5):1973-83. PubMed ID: 20934736 [TBL] [Abstract][Full Text] [Related]
5. How rising CO Visser PM; Verspagen JMH; Sandrini G; Stal LJ; Matthijs HCP; Davis TW; Paerl HW; Huisman J Harmful Algae; 2016 Apr; 54():145-159. PubMed ID: 28073473 [TBL] [Abstract][Full Text] [Related]
6. How physiological and physical processes contribute to the phenology of cyanobacterial blooms in large shallow lakes: A new Euler-Lagrangian coupled model. Feng T; Wang C; Wang P; Qian J; Wang X Water Res; 2018 Sep; 140():34-43. PubMed ID: 29684700 [TBL] [Abstract][Full Text] [Related]
7. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Xu H; Paerl HW; Qin B; Zhu G; Hall NS; Wu Y Environ Sci Technol; 2015 Jan; 49(2):1051-9. PubMed ID: 25495555 [TBL] [Abstract][Full Text] [Related]
8. Effects of different types of extracellular polysaccharides isolated from cyanobacterial blooms on the colony formation of unicellular Microcystis aeruginosa. Omori K; Datta T; Amano Y; Machida M Environ Sci Pollut Res Int; 2019 Feb; 26(4):3741-3750. PubMed ID: 30539395 [TBL] [Abstract][Full Text] [Related]
9. Selective control of toxic Microcystis water blooms using lysine and malonic acid: an enclosure experiment. Kaya K; Liu YD; Shen YW; Xiao BD; Sano T Environ Toxicol; 2005 Apr; 20(2):170-8. PubMed ID: 15793822 [TBL] [Abstract][Full Text] [Related]
10. [Effects of Cyanobacterial Blooms in Eutrophic Lakes on Water Quality of Connected Rivers]. Yu ML; Hong GX; Xu H; Zhu GW; Zhu MY; Quan QM Huan Jing Ke Xue; 2019 Feb; 40(2):603-613. PubMed ID: 30628322 [TBL] [Abstract][Full Text] [Related]
11. Phosphorus released from sediment of Dianchi Lake and its effect on growth of Microcystis aeruginosa. Liu J; Luo X; Zhang N; Wu Y Environ Sci Pollut Res Int; 2016 Aug; 23(16):16321-8. PubMed ID: 27155834 [TBL] [Abstract][Full Text] [Related]
12. Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China). Qin B; Li W; Zhu G; Zhang Y; Wu T; Gao G J Hazard Mater; 2015 Apr; 287():356-63. PubMed ID: 25679801 [TBL] [Abstract][Full Text] [Related]
13. Temperature and irradiance influences on cadmium and zinc uptake and toxicity in a freshwater cyanobacterium, Microcystis aeruginosa. Zeng J; Wang WX J Hazard Mater; 2011 Jun; 190(1-3):922-9. PubMed ID: 21536379 [TBL] [Abstract][Full Text] [Related]
14. Environmental triggers of a Microcystis (Cyanophyceae) bloom in an artificial lagoon of Hangzhou Bay, China. Tang C; Sun B; Yu K; Shi J; Liu M; Jiang T; Huo Y; He P Mar Pollut Bull; 2018 Oct; 135():776-782. PubMed ID: 30301097 [TBL] [Abstract][Full Text] [Related]
15. Algicidal characterization and mechanism of Bacillus licheniformis Sp34 against Microcystis aeruginosa in Dianchi Lake. Liu J; Yang C; Chi Y; Wu D; Dai X; Zhang X; Igarashi Y; Luo F J Basic Microbiol; 2019 Nov; 59(11):1112-1124. PubMed ID: 31502316 [TBL] [Abstract][Full Text] [Related]
16. Effects of algae growth on cadmium remobilization and ecological risk in sediments of Taihu Lake. Ni L; Li D; Su L; Xu J; Li S; Ye X; Geng H; Wang P; Li Y; Li Y; Acharya K Chemosphere; 2016 May; 151():37-44. PubMed ID: 26923240 [TBL] [Abstract][Full Text] [Related]
17. Irreversible collective migration of cyanobacteria in eutrophic conditions. Dervaux J; Mejean A; Brunet P PLoS One; 2015; 10(3):e0120906. PubMed ID: 25799424 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of the growth of cyanobacteria during the recruitment stage in Lake Taihu. Lu Y; Wang J; Zhang X; Kong F Environ Sci Pollut Res Int; 2016 Mar; 23(6):5830-8. PubMed ID: 26590061 [TBL] [Abstract][Full Text] [Related]
19. Effects of calcium levels on colonial aggregation and buoyancy of Microcystis aeruginosa. Wang YW; Zhao J; Li JH; Li SS; Zhang LH; Wu M Curr Microbiol; 2011 Feb; 62(2):679-83. PubMed ID: 20872220 [TBL] [Abstract][Full Text] [Related]
20. Species-dependent variation in sensitivity of Microcystis species to copper sulfate: implication in algal toxicity of copper and controls of blooms. Wu H; Wei G; Tan X; Li L; Li M Sci Rep; 2017 Jan; 7():40393. PubMed ID: 28079177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]