BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 31767458)

  • 1. Impacts of biochar and silicate fertilizer on arsenic accumulation in rice (Oryza sativa L.).
    Jin W; Wang Z; Sun Y; Wang Y; Bi C; Zhou L; Zheng X
    Ecotoxicol Environ Saf; 2020 Feb; 189():109928. PubMed ID: 31767458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of low-dose biochar amendments on arsenic accumulation in rice (Oryza sativa L.).
    Lv D; Wang Z; Sun Y; Jin W; Wang Y; Zhou L; Zheng X
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13495-13503. PubMed ID: 33185794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar.
    Yu Z; Qiu W; Wang F; Lei M; Wang D; Song Z
    Chemosphere; 2017 Feb; 168():341-349. PubMed ID: 27810533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation.
    Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG
    Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar and ash derived from silicon-rich rice husk decrease inorganic arsenic species in rice grain.
    Leksungnoen P; Wisawapipat W; Ketrot D; Aramrak S; Nookabkaew S; Rangkadilok N; Satayavivad J
    Sci Total Environ; 2019 Sep; 684():360-370. PubMed ID: 31153082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A paddy field study of arsenic and cadmium pollution control by using iron-modified biochar and silica sol together.
    Pan D; Liu C; Yu H; Li F
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):24979-24987. PubMed ID: 31243656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management.
    Wan Y; Camara AY; Huang Q; Yu Y; Wang Q; Li H
    Ecotoxicol Environ Saf; 2018 Jul; 156():67-74. PubMed ID: 29529515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments.
    Lin L; Gao M; Qiu W; Wang D; Huang Q; Song Z
    Environ Pollut; 2017 Dec; 231(Pt 1):479-486. PubMed ID: 28841500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined impacts of Si-rich rice residues and flooding extent on grain As and Cd in rice.
    Seyfferth AL; Amaral D; Limmer MA; Guilherme LRG
    Environ Int; 2019 Jul; 128():301-309. PubMed ID: 31077999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants.
    Wu C; Zou Q; Xue SG; Pan WS; Yue X; Hartley W; Huang L; Mo JY
    Chemosphere; 2016 Dec; 165():478-486. PubMed ID: 27677123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system.
    Yin D; Wang X; Peng B; Tan C; Ma LQ
    Chemosphere; 2017 Nov; 186():928-937. PubMed ID: 28830065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochar amendment reduced methylmercury accumulation in rice plants.
    Shu R; Wang Y; Zhong H
    J Hazard Mater; 2016 Aug; 313():1-8. PubMed ID: 27045620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields.
    Wang HY; Wen SL; Chen P; Zhang L; Cen K; Sun GX
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3781-8. PubMed ID: 26498817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-modified phosphorus- and silicon-based biochars exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil.
    Yang X; Wen E; Ge C; El-Naggar A; Yu H; Wang S; Kwon EE; Song H; Shaheen SM; Wang H; Rinklebe J
    J Hazard Mater; 2023 Feb; 443(Pt B):130203. PubMed ID: 36327835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system.
    Rajendran M; Shi L; Wu C; Li W; An W; Liu Z; Xue S
    Chemosphere; 2019 May; 222():314-322. PubMed ID: 30708165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils.
    Xiao W; Ye X; Zhu Z; Zhang Q; Zhao S; Chen D; Gao N; Hu J
    Ecotoxicol Environ Saf; 2021 Jan; 208():111506. PubMed ID: 33120269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment--a field experiment in Hunan, China.
    Zheng R; Chen Z; Cai C; Tie B; Liu X; Reid BJ; Huang Q; Lei M; Sun G; Baltrėnaitė E
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):11097-108. PubMed ID: 25794575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium and arsenic accumulation during the rice growth period under in situ remediation.
    Gu JF; Zhou H; Tang HL; Yang WT; Zeng M; Liu ZM; Peng PQ; Liao BH
    Ecotoxicol Environ Saf; 2019 Apr; 171():451-459. PubMed ID: 30639871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of agronomic practices on arsenic accumulation and speciation in rice grain.
    Ma R; Shen J; Wu J; Tang Z; Shen Q; Zhao FJ
    Environ Pollut; 2014 Nov; 194():217-223. PubMed ID: 25150455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution and transformation of lead in rice plants grown in contaminated soil amended with biochar and lime.
    Li H; Xu H; Zhou S; Yu Y; Li H; Zhou C; Chen Y; Li Y; Wang M; Wang G
    Ecotoxicol Environ Saf; 2018 Dec; 165():589-596. PubMed ID: 30236921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.