These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
526 related articles for article (PubMed ID: 31767458)
1. Impacts of biochar and silicate fertilizer on arsenic accumulation in rice (Oryza sativa L.). Jin W; Wang Z; Sun Y; Wang Y; Bi C; Zhou L; Zheng X Ecotoxicol Environ Saf; 2020 Feb; 189():109928. PubMed ID: 31767458 [TBL] [Abstract][Full Text] [Related]
2. The effects of low-dose biochar amendments on arsenic accumulation in rice (Oryza sativa L.). Lv D; Wang Z; Sun Y; Jin W; Wang Y; Zhou L; Zheng X Environ Sci Pollut Res Int; 2021 Mar; 28(11):13495-13503. PubMed ID: 33185794 [TBL] [Abstract][Full Text] [Related]
3. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Yu Z; Qiu W; Wang F; Lei M; Wang D; Song Z Chemosphere; 2017 Feb; 168():341-349. PubMed ID: 27810533 [TBL] [Abstract][Full Text] [Related]
4. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100 [TBL] [Abstract][Full Text] [Related]
5. Biochar and ash derived from silicon-rich rice husk decrease inorganic arsenic species in rice grain. Leksungnoen P; Wisawapipat W; Ketrot D; Aramrak S; Nookabkaew S; Rangkadilok N; Satayavivad J Sci Total Environ; 2019 Sep; 684():360-370. PubMed ID: 31153082 [TBL] [Abstract][Full Text] [Related]
6. A paddy field study of arsenic and cadmium pollution control by using iron-modified biochar and silica sol together. Pan D; Liu C; Yu H; Li F Environ Sci Pollut Res Int; 2019 Aug; 26(24):24979-24987. PubMed ID: 31243656 [TBL] [Abstract][Full Text] [Related]
7. Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management. Wan Y; Camara AY; Huang Q; Yu Y; Wang Q; Li H Ecotoxicol Environ Saf; 2018 Jul; 156():67-74. PubMed ID: 29529515 [TBL] [Abstract][Full Text] [Related]
8. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments. Lin L; Gao M; Qiu W; Wang D; Huang Q; Song Z Environ Pollut; 2017 Dec; 231(Pt 1):479-486. PubMed ID: 28841500 [TBL] [Abstract][Full Text] [Related]
9. Combined impacts of Si-rich rice residues and flooding extent on grain As and Cd in rice. Seyfferth AL; Amaral D; Limmer MA; Guilherme LRG Environ Int; 2019 Jul; 128():301-309. PubMed ID: 31077999 [TBL] [Abstract][Full Text] [Related]
10. Effect of silicate on arsenic fractionation in soils and its accumulation in rice plants. Wu C; Zou Q; Xue SG; Pan WS; Yue X; Hartley W; Huang L; Mo JY Chemosphere; 2016 Dec; 165():478-486. PubMed ID: 27677123 [TBL] [Abstract][Full Text] [Related]
11. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Yin D; Wang X; Peng B; Tan C; Ma LQ Chemosphere; 2017 Nov; 186():928-937. PubMed ID: 28830065 [TBL] [Abstract][Full Text] [Related]
12. Biochar amendment reduced methylmercury accumulation in rice plants. Shu R; Wang Y; Zhong H J Hazard Mater; 2016 Aug; 313():1-8. PubMed ID: 27045620 [TBL] [Abstract][Full Text] [Related]
13. Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields. Wang HY; Wen SL; Chen P; Zhang L; Cen K; Sun GX Environ Sci Pollut Res Int; 2016 Feb; 23(4):3781-8. PubMed ID: 26498817 [TBL] [Abstract][Full Text] [Related]
14. Iron-modified phosphorus- and silicon-based biochars exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil. Yang X; Wen E; Ge C; El-Naggar A; Yu H; Wang S; Kwon EE; Song H; Shaheen SM; Wang H; Rinklebe J J Hazard Mater; 2023 Feb; 443(Pt B):130203. PubMed ID: 36327835 [TBL] [Abstract][Full Text] [Related]
15. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Rajendran M; Shi L; Wu C; Li W; An W; Liu Z; Xue S Chemosphere; 2019 May; 222():314-322. PubMed ID: 30708165 [TBL] [Abstract][Full Text] [Related]
16. Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils. Xiao W; Ye X; Zhu Z; Zhang Q; Zhao S; Chen D; Gao N; Hu J Ecotoxicol Environ Saf; 2021 Jan; 208():111506. PubMed ID: 33120269 [TBL] [Abstract][Full Text] [Related]
17. Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment--a field experiment in Hunan, China. Zheng R; Chen Z; Cai C; Tie B; Liu X; Reid BJ; Huang Q; Lei M; Sun G; Baltrėnaitė E Environ Sci Pollut Res Int; 2015 Jul; 22(14):11097-108. PubMed ID: 25794575 [TBL] [Abstract][Full Text] [Related]
18. Cadmium and arsenic accumulation during the rice growth period under in situ remediation. Gu JF; Zhou H; Tang HL; Yang WT; Zeng M; Liu ZM; Peng PQ; Liao BH Ecotoxicol Environ Saf; 2019 Apr; 171():451-459. PubMed ID: 30639871 [TBL] [Abstract][Full Text] [Related]
19. Impact of agronomic practices on arsenic accumulation and speciation in rice grain. Ma R; Shen J; Wu J; Tang Z; Shen Q; Zhao FJ Environ Pollut; 2014 Nov; 194():217-223. PubMed ID: 25150455 [TBL] [Abstract][Full Text] [Related]
20. Distribution and transformation of lead in rice plants grown in contaminated soil amended with biochar and lime. Li H; Xu H; Zhou S; Yu Y; Li H; Zhou C; Chen Y; Li Y; Wang M; Wang G Ecotoxicol Environ Saf; 2018 Dec; 165():589-596. PubMed ID: 30236921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]