These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
526 related articles for article (PubMed ID: 31767458)
21. The Fe Yao Y; Zhou H; Yan XL; Yang X; Huang KW; Liu J; Li LJ; Zhang JY; Gu JF; Zhou Y; Liao BH Environ Sci Pollut Res Int; 2021 Apr; 28(14):18050-18061. PubMed ID: 33410055 [TBL] [Abstract][Full Text] [Related]
22. Enhanced arsenic depletion by rice plant from flooded paddy soil with soluble organic fertilizer application. He S; Wang X; Zheng C; Yan L; Li L; Huang R; Wang H Chemosphere; 2020 Aug; 252():126521. PubMed ID: 32203780 [TBL] [Abstract][Full Text] [Related]
23. Optimizing biochar, vermicompost, and duckweed amendments to mitigate arsenic uptake and accumulation in rice (Oryza sativa L.) cultivated on arsenic-contaminated soil. Roy R; Hossain A; Sharif MO; Das M; Sarker T BMC Plant Biol; 2024 Jun; 24(1):545. PubMed ID: 38872089 [TBL] [Abstract][Full Text] [Related]
24. Effects of Fe-Mn-Ce oxide-modified biochar on As accumulation, morphology, and quality of rice (Oryza sativa L.). Lian F; Liu X; Gao M; Li H; Qiu W; Song Z Environ Sci Pollut Res Int; 2020 May; 27(15):18196-18207. PubMed ID: 32172416 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Qiao JT; Liu TX; Wang XQ; Li FB; Lv YH; Cui JH; Zeng XD; Yuan YZ; Liu CP Chemosphere; 2018 Mar; 195():260-271. PubMed ID: 29272795 [TBL] [Abstract][Full Text] [Related]
26. [Impacts of Silicon Fertilizer as Base Manure on Cadmium Bioavailability in Soil and on Cadmium Accumulation in Rice Plants]. Gao ZX; Zhou H; Yang WT; Gu JF; Chen LW; Du WQ; Xu J; Liao BH Huan Jing Ke Xue; 2017 Dec; 38(12):5299-5307. PubMed ID: 29964594 [TBL] [Abstract][Full Text] [Related]
27. Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil. Liu S; Lu Y; Yang C; Liu C; Ma L; Dang Z Environ Sci Pollut Res Int; 2017 Oct; 24(30):23815-23824. PubMed ID: 28866780 [TBL] [Abstract][Full Text] [Related]
28. Effect of water management, arsenic and phosphorus levels on rice in a high-arsenic soil-water system: II. Arsenic uptake. Talukder AS; Meisner CA; Sarkar MA; Islam MS; Sayre KD; Duxbury JM; Lauren JG Ecotoxicol Environ Saf; 2012 Jun; 80():145-51. PubMed ID: 22425734 [TBL] [Abstract][Full Text] [Related]
29. Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system. Xu C; Chen HX; Xiang Q; Zhu HH; Wang S; Zhu QH; Huang DY; Zhang YZ Environ Sci Pollut Res Int; 2018 Jan; 25(2):1147-1156. PubMed ID: 29079982 [TBL] [Abstract][Full Text] [Related]
30. Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.). Kumarathilaka P; Bundschuh J; Seneweera S; Marchuk A; Ok YS Environ Pollut; 2021 Oct; 286():117661. PubMed ID: 34438503 [TBL] [Abstract][Full Text] [Related]
31. Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice(Oryza sativa L.): A field study. Zhang Y; Chen T; Liao Y; Reid BJ; Chi H; Hou Y; Cai C Environ Pollut; 2016 Sep; 216():819-825. PubMed ID: 27368131 [TBL] [Abstract][Full Text] [Related]
32. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Zheng RL; Cai C; Liang JH; Huang Q; Chen Z; Huang YZ; Arp HP; Sun GX Chemosphere; 2012 Oct; 89(7):856-62. PubMed ID: 22664390 [TBL] [Abstract][Full Text] [Related]
33. Effects of biochar amendment on the soil silicon cycle in a soil-rice ecosystem. Wang Y; Xiao X; Zhang K; Chen B Environ Pollut; 2019 May; 248():823-833. PubMed ID: 30856498 [TBL] [Abstract][Full Text] [Related]
34. Biochar and nitrate reduce risk of methylmercury in soils under straw amendment. Zhang Y; Liu YR; Lei P; Wang YJ; Zhong H Sci Total Environ; 2018 Apr; 619-620():384-390. PubMed ID: 29156259 [TBL] [Abstract][Full Text] [Related]
35. Using Kaolin in Reduction of Arsenic in Rice Grains: Effect of Different Types of Kaolin, pH and Arsenic Complex. Arnamwong S; Suksabye P; Thiravetyan P Bull Environ Contam Toxicol; 2016 Apr; 96(4):556-61. PubMed ID: 26837387 [TBL] [Abstract][Full Text] [Related]
36. Mitigating arsenic accumulation in rice (Oryza sativa L.) using Fe-Mn-La-impregnated biochar composites in arsenic-contaminated paddy soil. Lin L; Gao M; Song Z; Mu H Environ Sci Pollut Res Int; 2020 Nov; 27(33):41446-41457. PubMed ID: 32683621 [TBL] [Abstract][Full Text] [Related]
37. Effect of biochar from peanut shell on speciation and availability of lead and zinc in an acidic paddy soil. Chao X; Qian X; Han-Hua Z; Shuai W; Qi-Hong Z; Dao-You H; Yang-Zhu Z Ecotoxicol Environ Saf; 2018 Nov; 164():554-561. PubMed ID: 30149354 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of uptake, translocation, and accumulation of arsenic species by six different Brazilian rice (Oryza sativa L.) cultivars. Paulelli ACC; Martins AC; Batista BL; Barbosa F Ecotoxicol Environ Saf; 2019 Mar; 169():376-382. PubMed ID: 30466018 [TBL] [Abstract][Full Text] [Related]
39. [Effects of arsenic from soil and irrigation-water on As accumulation on the root surfaces and in mature rice plants (Oryza sativa L.)]. Liu WJ; Zhu YG; Hu Y; Zhao QL Huan Jing Ke Xue; 2008 Apr; 29(4):862-8. PubMed ID: 18637329 [TBL] [Abstract][Full Text] [Related]
40. Silicon-rich amendments in rice paddies: Effects on arsenic uptake and biogeochemistry. Limmer MA; Mann J; Amaral DC; Vargas R; Seyfferth AL Sci Total Environ; 2018 May; 624():1360-1368. PubMed ID: 29929248 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]