These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 31767541)

  • 21. A Deep Learning Approach for Histology-Based Nucleus Segmentation and Tumor Microenvironment Characterization.
    Rong R; Sheng H; Jin KW; Wu F; Luo D; Wen Z; Tang C; Yang DM; Jia L; Amgad M; Cooper LAD; Xie Y; Zhan X; Wang S; Xiao G
    Mod Pathol; 2023 Aug; 36(8):100196. PubMed ID: 37100227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational Staining of Pathology Images to Study the Tumor Microenvironment in Lung Cancer.
    Wang S; Rong R; Yang DM; Fujimoto J; Yan S; Cai L; Yang L; Luo D; Behrens C; Parra ER; Yao B; Xu L; Wang T; Zhan X; Wistuba II; Minna J; Xie Y; Xiao G
    Cancer Res; 2020 May; 80(10):2056-2066. PubMed ID: 31915129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks.
    Yu KH; Wang F; Berry GJ; Ré C; Altman RB; Snyder M; Kohane IS
    J Am Med Inform Assoc; 2020 May; 27(5):757-769. PubMed ID: 32364237
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of visceral pleural invasion of clinical stage I lung adenocarcinoma using thoracoscopic images and deep learning.
    Shimada Y; Ojima T; Takaoka Y; Sugano A; Someya Y; Hirabayashi K; Homma T; Kitamura N; Akemoto Y; Tanabe K; Sato F; Yoshimura N; Tsuchiya T
    Surg Today; 2024 Jun; 54(6):540-550. PubMed ID: 37864054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A convolutional neural network for segmentation of yeast cells without manual training annotations.
    Kruitbosch HT; Mzayek Y; Omlor S; Guerra P; Milias-Argeitis A
    Bioinformatics; 2022 Feb; 38(5):1427-1433. PubMed ID: 34893817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer-Assisted Decision Support System in Pulmonary Cancer detection and stage classification on CT images.
    Masood A; Sheng B; Li P; Hou X; Wei X; Qin J; Feng D
    J Biomed Inform; 2018 Mar; 79():117-128. PubMed ID: 29366586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep segmentation networks predict survival of non-small cell lung cancer.
    Baek S; He Y; Allen BG; Buatti JM; Smith BJ; Tong L; Sun Z; Wu J; Diehn M; Loo BW; Plichta KA; Seyedin SN; Gannon M; Cabel KR; Kim Y; Wu X
    Sci Rep; 2019 Nov; 9(1):17286. PubMed ID: 31754135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selection, Visualization, and Interpretation of Deep Features in Lung Adenocarcinoma and Squamous Cell Carcinoma.
    Dehkharghanian T; Rahnamayan S; Riasatian A; Bidgoli AA; Kalra S; Zaveri M; Babaie M; Seyed Sajadi MS; Gonzalelz R; Diamandis P; Pantanowitz L; Huang T; Tizhoosh HR
    Am J Pathol; 2021 Dec; 191(12):2172-2183. PubMed ID: 34508689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transformaer-based model for lung adenocarcinoma subtypes.
    Du F; Zhou H; Niu Y; Han Z; Sui X
    Med Phys; 2024 Aug; 51(8):5337-5350. PubMed ID: 38427790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images.
    Cui Y; Zhang G; Liu Z; Xiong Z; Hu J
    Med Biol Eng Comput; 2019 Sep; 57(9):2027-2043. PubMed ID: 31346949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Prediction of recurrence-free survival in lung adenocarcinoma based on self-supervised pre-training and multi-task learning].
    Hu L; Xia W; Li Q; Gao X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Apr; 41(2):205-212. PubMed ID: 38686399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study.
    Hosny A; Parmar C; Coroller TP; Grossmann P; Zeleznik R; Kumar A; Bussink J; Gillies RJ; Mak RH; Aerts HJWL
    PLoS Med; 2018 Nov; 15(11):e1002711. PubMed ID: 30500819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward an Expert Level of Lung Cancer Detection and Classification Using a Deep Convolutional Neural Network.
    Zhang C; Sun X; Dang K; Li K; Guo XW; Chang J; Yu ZQ; Huang FY; Wu YS; Liang Z; Liu ZY; Zhang XG; Gao XL; Huang SH; Qin J; Feng WN; Zhou T; Zhang YB; Fang WJ; Zhao MF; Yang XN; Zhou Q; Wu YL; Zhong WZ
    Oncologist; 2019 Sep; 24(9):1159-1165. PubMed ID: 30996009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Convolutional bi-directional learning and spatial enhanced attentions for lung tumor segmentation.
    Xuan P; Jiang B; Cui H; Jin Q; Cheng P; Nakaguchi T; Zhang T; Li C; Ning Z; Guo M; Wang L
    Comput Methods Programs Biomed; 2022 Nov; 226():107147. PubMed ID: 36206688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying invasiveness of clinical stage IA lung adenocarcinoma with computed tomography texture features.
    Qiu ZB; Zhang C; Chu XP; Cai FY; Yang XN; Wu YL; Zhong WZ
    J Thorac Cardiovasc Surg; 2022 Mar; 163(3):805-815.e3. PubMed ID: 33541730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study to evaluate CT-based semantic and radiomic features in preoperative diagnosis of invasive pulmonary adenocarcinomas manifesting as subsolid nodules.
    Wu YJ; Liu YC; Liao CY; Tang EK; Wu FZ
    Sci Rep; 2021 Jan; 11(1):66. PubMed ID: 33462251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Learning Algorithm for Reducing CT Slice Thickness: Effect on Reproducibility of Radiomic Features in Lung Cancer.
    Park S; Lee SM; Do KH; Lee JG; Bae W; Park H; Jung KH; Seo JB
    Korean J Radiol; 2019 Oct; 20(10):1431-1440. PubMed ID: 31544368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features.
    Qaiser T; Tsang YW; Taniyama D; Sakamoto N; Nakane K; Epstein D; Rajpoot N
    Med Image Anal; 2019 Jul; 55():1-14. PubMed ID: 30991188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated glioma grading on conventional MRI images using deep convolutional neural networks.
    Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW
    Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Weakly supervised learning for classification of lung cytological images using attention-based multiple instance learning.
    Teramoto A; Kiriyama Y; Tsukamoto T; Sakurai E; Michiba A; Imaizumi K; Saito K; Fujita H
    Sci Rep; 2021 Oct; 11(1):20317. PubMed ID: 34645863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.