BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31767776)

  • 1.
    Wiegard A; Köbler C; Oyama K; Dörrich AK; Azai C; Terauchi K; Wilde A; Axmann IM
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal tool set for a prokaryotic circadian clock.
    Schmelling NM; Lehmann R; Chaudhury P; Beck C; Albers SV; Axmann IM; Wiegard A
    BMC Evol Biol; 2017 Jul; 17(1):169. PubMed ID: 28732467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dephosphorylation of the core clock protein KaiC in the cyanobacterial KaiABC circadian oscillator proceeds via an ATP synthase mechanism.
    Egli M; Mori T; Pattanayek R; Xu Y; Qin X; Johnson CH
    Biochemistry; 2012 Feb; 51(8):1547-58. PubMed ID: 22304631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution.
    Murayama Y; Mukaiyama A; Imai K; Onoue Y; Tsunoda A; Nohara A; Ishida T; Maéda Y; Terauchi K; Kondo T; Akiyama S
    EMBO J; 2011 Jan; 30(1):68-78. PubMed ID: 21113137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian clock-protein expression in cyanobacteria: rhythms and phase setting.
    Xu Y; Mori T; Johnson CH
    EMBO J; 2000 Jul; 19(13):3349-57. PubMed ID: 10880447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization of the circadian clock to the environment tracked in real time.
    Fang M; Chavan AG; LiWang A; Golden SS
    Proc Natl Acad Sci U S A; 2023 Mar; 120(13):e2221453120. PubMed ID: 36940340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global gene repression by KaiC as a master process of prokaryotic circadian system.
    Nakahira Y; Katayama M; Miyashita H; Kutsuna S; Iwasaki H; Oyama T; Kondo T
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):881-5. PubMed ID: 14709675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the Roles for Essential Genes in the Regulation of the Circadian Clock in
    Boodaghian N; Park H; Cohen SE
    J Biol Rhythms; 2024 Jun; 39(3):308-317. PubMed ID: 38357890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and dynamic aspects of protein clocks: how can they be so slow and stable?
    Akiyama S
    Cell Mol Life Sci; 2012 Jul; 69(13):2147-60. PubMed ID: 22273739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of KaiC-Dependent Timekeepers: A Proto-circadian Timing Mechanism Confers Adaptive Fitness in the Purple Bacterium Rhodopseudomonas palustris.
    Ma P; Mori T; Zhao C; Thiel T; Johnson CH
    PLoS Genet; 2016 Mar; 12(3):e1005922. PubMed ID: 26982486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diel Cycle Proteomics: Illuminating Molecular Dynamics in Purple Bacteria for Optimized Biotechnological Applications.
    Matallana-Surget S; Geron A; Decroo C; Wattiez R
    Int J Mol Sci; 2024 Mar; 25(5):. PubMed ID: 38474181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monomer-shuffling and allosteric transition in KaiC circadian oscillation.
    Yoda M; Eguchi K; Terada TP; Sasai M
    PLoS One; 2007 May; 2(5):e408. PubMed ID: 17476330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA.
    Mori T; Saveliev SV; Xu Y; Stafford WF; Cox MM; Inman RB; Johnson CH
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):17203-8. PubMed ID: 12477935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock.
    Ivleva NB; Gao T; LiWang AC; Golden SS
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17468-73. PubMed ID: 17088557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator.
    Rust MJ; Golden SS; O'Shea EK
    Science; 2011 Jan; 331(6014):220-3. PubMed ID: 21233390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inner workings of an ancient biological clock.
    Fang M; LiWang A; Golden SS; Partch CL
    Trends Biochem Sci; 2024 Mar; 49(3):236-246. PubMed ID: 38185606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhythms in energy storage control the ability of the cyanobacterial circadian clock to reset.
    Pattanayak GK; Phong C; Rust MJ
    Curr Biol; 2014 Aug; 24(16):1934-8. PubMed ID: 25127221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light Wavelength as a Contributory Factor of Environmental Fitness in the Cyanobacterial Circadian Clock.
    Kawamoto N; Nakanishi S; Shimakawa G
    Plant Cell Physiol; 2024 May; 65(5):798-808. PubMed ID: 38441328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyamines Disrupt the KaiABC Oscillator by Inducing Protein Denaturation.
    Li J; Zhang L; Xiong J; Cheng X; Huang Y; Su Z; Yi M; Liu S
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31540079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cyanobacterial Component Required for Pilus Biogenesis Affects the Exoproteome.
    Yegorov Y; Sendersky E; Zilberman S; Nagar E; Waldman Ben-Asher H; Shimoni E; Simkovsky R; Golden SS; LiWang A; Schwarz R
    mBio; 2021 Mar; 12(2):. PubMed ID: 33727363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.