BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 31767778)

  • 21. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development.
    Sakhtah H; Koyama L; Zhang Y; Morales DK; Fields BL; Price-Whelan A; Hogan DA; Shepard K; Dietrich LE
    Proc Natl Acad Sci U S A; 2016 Jun; 113(25):E3538-47. PubMed ID: 27274079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-Time Electrochemical Detection of Pseudomonas aeruginosa Phenazine Metabolites Using Transparent Carbon Ultramicroelectrode Arrays.
    Simoska O; Sans M; Fitzpatrick MD; Crittenden CM; Eberlin LS; Shear JB; Stevenson KJ
    ACS Sens; 2019 Jan; 4(1):170-179. PubMed ID: 30525472
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system.
    Chukwubuikem A; Berger C; Mady A; Rosenbaum MA
    Microb Biotechnol; 2021 Jul; 14(4):1613-1626. PubMed ID: 34000093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-Mediated Decreases in Cyclic di-GMP Levels Inhibit Structure Formation in
    Kahl LJ; Price-Whelan A; Dietrich LEP
    J Bacteriol; 2020 Jun; 202(14):. PubMed ID: 32366589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical Potential Influences Phenazine Production, Electron Transfer and Consequently Electric Current Generation by
    Bosire EM; Rosenbaum MA
    Front Microbiol; 2017; 8():892. PubMed ID: 28572797
    [No Abstract]   [Full Text] [Related]  

  • 26. Secondary Metabolites Produced during Aspergillus fumigatus and Pseudomonas aeruginosa Biofilm Formation.
    Bastos RW; Akiyama D; Dos Reis TF; Colabardini AC; Luperini RS; de Castro PA; Baldini RL; Fill T; Goldman GH
    mBio; 2022 Aug; 13(4):e0185022. PubMed ID: 35856657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scavenging of neutrophil-derived superoxide anion by 1-hydroxyphenazine, a phenazine derivative associated with chronic Pseudomonas aeruginosa infection: relevance to cystic fibrosis.
    Muller M
    Biochim Biophys Acta; 1995 Dec; 1272(3):185-9. PubMed ID: 8541351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp.
    Mavrodi DV; Parejko JA; Mavrodi OV; Kwak YS; Weller DM; Blankenfeldt W; Thomashow LS
    Environ Microbiol; 2013 Mar; 15(3):675-86. PubMed ID: 22882648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms.
    Bellin DL; Sakhtah H; Zhang Y; Price-Whelan A; Dietrich LE; Shepard KL
    Nat Commun; 2016 Jan; 7():10535. PubMed ID: 26813638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation.
    Das T; Kutty SK; Tavallaie R; Ibugo AI; Panchompoo J; Sehar S; Aldous L; Yeung AW; Thomas SR; Kumar N; Gooding JJ; Manefield M
    Sci Rep; 2015 Feb; 5():8398. PubMed ID: 25669133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Screening of natural phenazine producers for electroactivity in bioelectrochemical systems.
    Franco A; Elbahnasy M; Rosenbaum MA
    Microb Biotechnol; 2023 Mar; 16(3):579-594. PubMed ID: 36571174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic Degradation of Phenazines Can Generate Energy and Protect Sensitive Organisms from Toxicity.
    Costa KC; Bergkessel M; Saunders S; Korlach J; Newman DK
    mBio; 2015 Oct; 6(6):e01520-15. PubMed ID: 26507234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical O
    Flamholz AI; Saccomano S; Cash K; Newman DK
    mBio; 2022 Dec; 13(6):e0207622. PubMed ID: 36314810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity.
    Recinos DA; Sekedat MD; Hernandez A; Cohen TS; Sakhtah H; Prince AS; Price-Whelan A; Dietrich LE
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19420-5. PubMed ID: 23129634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes.
    Qiao Y; Qiao YJ; Zou L; Ma CX; Liu JH
    Bioresour Technol; 2015 Dec; 198():1-6. PubMed ID: 26360598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial heterogeneity in biofilm metabolism elicited by local control of phenazine methylation.
    Evans CR; Smiley MK; Asahara Thio S; Wei M; Florek LC; Dayton H; Price-Whelan A; Min W; Dietrich LEP
    Proc Natl Acad Sci U S A; 2023 Oct; 120(43):e2313208120. PubMed ID: 37847735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redox cycling-based detection of phenazine metabolites secreted from Pseudomonas aeruginosa in nanopore electrode arrays.
    Do H; Kwon SR; Baek S; Madukoma CS; Smiley MK; Dietrich LE; Shrout JD; Bohn PW
    Analyst; 2021 Feb; 146(4):1346-1354. PubMed ID: 33393560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying the dynamics of bacterial secondary metabolites by spectral multiphoton microscopy.
    Sullivan NL; Tzeranis DS; Wang Y; So PT; Newman D
    ACS Chem Biol; 2011 Sep; 6(9):893-9. PubMed ID: 21671613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial community morphogenesis is intimately linked to the intracellular redox state.
    Dietrich LE; Okegbe C; Price-Whelan A; Sakhtah H; Hunter RC; Newman DK
    J Bacteriol; 2013 Apr; 195(7):1371-80. PubMed ID: 23292774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An UV-vis spectroelectrochemical approach for rapid detection of phenazines and exploration of their redox characteristics.
    Chen W; Liu XY; Qian C; Song XN; Li WW; Yu HQ
    Biosens Bioelectron; 2015 Feb; 64():25-9. PubMed ID: 25173735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.