These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31767889)

  • 21. Additive Manufacture of Composite Soft Pneumatic Actuators.
    Byrne O; Coulter F; Glynn M; Jones JFX; Ní Annaidh A; O'Cearbhaill ED; Holland DP
    Soft Robot; 2018 Dec; 5(6):726-736. PubMed ID: 30148682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators.
    Aoyagi W; Omiya M
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.
    Feng GH; Huang WL
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():241-9. PubMed ID: 25491826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Printed Electrically-Driven Soft Actuators.
    Haghiashtiani G; Habtour E; Park SH; Gardea F; McAlpine MC
    Extreme Mech Lett; 2018 May; 21():1-8. PubMed ID: 32596434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printing Ultraflexible Magnetic Actuators via Screw Extrusion Method.
    Cao X; Xuan S; Gao Y; Lou C; Deng H; Gong X
    Adv Sci (Weinh); 2022 May; 9(16):e2200898. PubMed ID: 35347888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of endovascular vibrating polymer actuator probe for mechanical thrombolysis: a phantom study.
    Choi SH; Yoon BR; Oh JS; Han MH; Lee JY; Cho HR; Kim MJ; Rhee K; Jho JY
    ASAIO J; 2011; 57(4):286-92. PubMed ID: 21701271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D Printing Hydrogel-Based Soft and Biohybrid Actuators: A Mini-Review on Fabrication Techniques, Applications, and Challenges.
    Sun W; Schaffer S; Dai K; Yao L; Feinberg A; Webster-Wood V
    Front Robot AI; 2021; 8():673533. PubMed ID: 33996931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soft Somatosensitive Actuators via Embedded 3D Printing.
    Truby RL; Wehner M; Grosskopf AK; Vogt DM; Uzel SGM; Wood RJ; Lewis JA
    Adv Mater; 2018 Apr; 30(15):e1706383. PubMed ID: 29484726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance.
    Feng GH; Liu KM
    Sensors (Basel); 2014 May; 14(5):8380-97. PubMed ID: 24824370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfonated poly(styrene-b-ethylene-co-butylene-b-styrene) and fullerene composites for ionic polymer actuators.
    Wang XL; Oh IK
    J Nanosci Nanotechnol; 2010 May; 10(5):3203-6. PubMed ID: 20358922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimaterial Printing of Liquid Crystal Elastomers with Integrated Stretchable Electronics.
    Vinciguerra MR; Patel DK; Zu W; Tavakoli M; Majidi C; Yao L
    ACS Appl Mater Interfaces; 2023 May; 15(20):24777-24787. PubMed ID: 37163362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D Printing Magnetic Actuators for Biomimetic Applications.
    Cao X; Xuan S; Sun S; Xu Z; Li J; Gong X
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):30127-30136. PubMed ID: 34137263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strategies to Control Performance of 3D-Printed, Cable-Driven Soft Polymer Actuators: From Simple Architectures to Gripper Prototype.
    Slesarenko V; Engelkemier S; Galich PI; Vladimirsky D; Klein G; Rudykh S
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D Printing Microactuators for Soft Microrobots.
    Tyagi M; Spinks GM; Jager EWH
    Soft Robot; 2021 Feb; 8(1):19-27. PubMed ID: 32326869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a Soft Robotic Bending Actuator Based on a Novel Sulfonated Polyvinyl Chloride-Phosphotungstic Acid Ionic Polymer-Metal Composite (IPMC) Membrane.
    Luqman M; Anis A; Shaikh HM; Al-Zahrani SM; Alam MA
    Membranes (Basel); 2022 Jun; 12(7):. PubMed ID: 35877854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Convenient and Simple Ionic Polymer-Metal Composite (IPMC) Actuator Based on a Platinum-Coated Sulfonated Poly(ether ether ketone)-Polyaniline Composite Membrane.
    Luqman M; Shaikh HM; Anis A; Al-Zahrani SM; Alam MA
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Printed Motor-Sensory Module Prototype for Facial Rehabilitation.
    Walker S; Firouzeh A; Robertson M; Mengüç Y; Paik J
    Soft Robot; 2022 Apr; 9(2):354-363. PubMed ID: 34191624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel soft biomimetic microrobot with two motion attitudes.
    Shi L; Guo S; Li M; Mao S; Xiao N; Gao B; Song Z; Asaka K
    Sensors (Basel); 2012 Dec; 12(12):16732-58. PubMed ID: 23223076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon-Based Nanomaterials Electrodes of Ionic Soft Actuators: From Initial 1D Structure to 3D Composite Structure for Flexible Intelligent Devices.
    Wang B; Huang P; Li B; Wu Z; Xing Y; Zhu J; Liu L
    Small; 2023 Dec; 19(50):e2304246. PubMed ID: 37635123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.