BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 31768576)

  • 21. Extracellular phosphate sensing in mammals: what do we know?
    Beck L; Beck-Cormier S
    J Mol Endocrinol; 2020 Oct; 65(3):R53-R63. PubMed ID: 32755995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High phosphate actively induces cytotoxicity by rewiring pro-survival and pro-apoptotic signaling networks in HEK293 and HeLa cells.
    He P; Mann-Collura O; Fling J; Edara N; Hetz R; Razzaque MS
    FASEB J; 2021 Jan; 35(1):e20997. PubMed ID: 32892444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transforming growth factor-beta stimulates inorganic phosphate transport and expression of the type III phosphate transporter Glvr-1 in chondrogenic ATDC5 cells.
    Palmer G; Guicheux J; Bonjour JP; Caverzasio J
    Endocrinology; 2000 Jun; 141(6):2236-43. PubMed ID: 10830313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracellular inorganic phosphate regulates gibbon ape leukemia virus receptor-2/phosphate transporter mRNA expression in rat bone marrow stromal cells.
    Wada K; Mizuno M; Komori T; Tamura M
    J Cell Physiol; 2004 Jan; 198(1):40-7. PubMed ID: 14584042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance.
    McCubrey JA; Steelman LS; Chappell WH; Abrams SL; Wong EW; Chang F; Lehmann B; Terrian DM; Milella M; Tafuri A; Stivala F; Libra M; Basecke J; Evangelisti C; Martelli AM; Franklin RA
    Biochim Biophys Acta; 2007 Aug; 1773(8):1263-84. PubMed ID: 17126425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of phosphate sensing in bone and mineral metabolism.
    Chande S; Bergwitz C
    Nat Rev Endocrinol; 2018 Nov; 14(11):637-655. PubMed ID: 30218014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance.
    McCubrey JA; Steelman LS; Abrams SL; Lee JT; Chang F; Bertrand FE; Navolanic PM; Terrian DM; Franklin RA; D'Assoro AB; Salisbury JL; Mazzarino MC; Stivala F; Libra M
    Adv Enzyme Regul; 2006; 46():249-79. PubMed ID: 16854453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual regulation of MMP-2 expression by the type 1 insulin-like growth factor receptor: the phosphatidylinositol 3-kinase/Akt and Raf/ERK pathways transmit opposing signals.
    Zhang D; Bar-Eli M; Meloche S; Brodt P
    J Biol Chem; 2004 May; 279(19):19683-90. PubMed ID: 14993222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphate sensing.
    Bergwitz C; Jüppner H
    Adv Chronic Kidney Dis; 2011 Mar; 18(2):132-44. PubMed ID: 21406298
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Platelet-derived growth factor stimulates sodium-dependent Pi transport in osteoblastic cells via phospholipase Cgamma and phosphatidylinositol 3' -kinase.
    Zhen X; Bonjour JP; Caverzasio J
    J Bone Miner Res; 1997 Jan; 12(1):36-44. PubMed ID: 9240723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent findings in phosphate homeostasis.
    Prié D; Beck L; Urena P; Friedlander G
    Curr Opin Nephrol Hypertens; 2005 Jul; 14(4):318-24. PubMed ID: 15930998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of type III sodium-dependent phosphate transporters (Pit 1 and Pit 2) on podocyte and kidney function.
    Kulesza T; Piwkowska A
    J Cell Physiol; 2021 Oct; 236(10):7176-7185. PubMed ID: 33738792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Discovery of alpha-Klotho and FGF23 unveiled new insight into calcium and phosphate homeostasis].
    Nabeshima Y
    Clin Calcium; 2008 Jul; 18(7):923-34. PubMed ID: 18591743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphate transporters in renal, gastrointestinal, and other tissues.
    Forster I; Hernando N; Sorribas V; Werner A
    Adv Chronic Kidney Dis; 2011 Mar; 18(2):63-76. PubMed ID: 21406290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The type III transporters (PiT-1 and PiT-2) are the major sodium-dependent phosphate transporters in the mice and human brains.
    Inden M; Iriyama M; Zennami M; Sekine SI; Hara A; Yamada M; Hozumi I
    Brain Res; 2016 Apr; 1637():128-136. PubMed ID: 26923164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of adenosine triphosphate on phosphate uptake in renal proximal tubule cells: involvement of PKC and p38 MAPK.
    Lee YJ; Park SH; Jeung TO; Kim KW; Lee JH; Han HJ
    J Cell Physiol; 2005 Oct; 205(1):68-76. PubMed ID: 15880445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insulin-like growth factor 1 inhibits extracellular signal-regulated kinase to promote neuronal survival via the phosphatidylinositol 3-kinase/protein kinase A/c-Raf pathway.
    Subramaniam S; Shahani N; Strelau J; Laliberté C; Brandt R; Kaplan D; Unsicker K
    J Neurosci; 2005 Mar; 25(11):2838-52. PubMed ID: 15772344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Management of phosphate in chronic kidney disease--Regulation of posphate homeostasis].
    Segawa H; Miyamoto K
    Clin Calcium; 2009 Feb; 19(2):159-65. PubMed ID: 19182353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphate and Endothelial Function: How Sensing of Elevated Inorganic Phosphate Concentration Generates Signals in Endothelial Cells.
    Abbasian N; Bevington A; Burger D
    Adv Exp Med Biol; 2022; 1362():85-98. PubMed ID: 35288875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. IL-29 and IFN-α regulate the expression of MxA, 2',5'-OAS and PKR genes in association with the activation of Raf-MEK-ERK and PI3K-AKT signal pathways in HepG2.2.15 cells.
    Chai Y; Huang HL; Hu DJ; Luo X; Tao QS; Zhang XL; Zhang SQ
    Mol Biol Rep; 2011 Jan; 38(1):139-43. PubMed ID: 20309637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.