BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 31768817)

  • 1. Covisualization of Global DNA Methylation/Hydroxymethylation and Protein Biomarkers for Ultrahigh-Definition Epigenetic Phenotyping of Stem Cells.
    Tajbakhsh J
    Methods Mol Biol; 2020; 2150():79-92. PubMed ID: 31768817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covisualization of methylcytosine, global DNA, and protein biomarkers for In Situ 3D DNA methylation phenotyping of stem cells.
    Tajbakhsh J
    Methods Mol Biol; 2013; 1052():77-88. PubMed ID: 23592032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic heterogeneity of DNA methylation and hydroxymethylation in embryonic stem cell populations captured by single-cell 3D high-content analysis.
    Tajbakhsh J; Stefanovski D; Tang G; Wawrowsky K; Liu N; Fair JH
    Exp Cell Res; 2015 Mar; 332(2):190-201. PubMed ID: 25700729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous single-molecule epigenetic imaging of DNA methylation and hydroxymethylation.
    Song CX; Diao J; Brunger AT; Quake SR
    Proc Natl Acad Sci U S A; 2016 Apr; 113(16):4338-43. PubMed ID: 27035984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain.
    Coppieters N; Dieriks BV; Lill C; Faull RL; Curtis MA; Dragunow M
    Neurobiol Aging; 2014 Jun; 35(6):1334-44. PubMed ID: 24387984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antigen Retrieval for Immunostaining of Modified Cytosine Species.
    Celik-Uzuner S
    Methods Mol Biol; 2021; 2198():217-226. PubMed ID: 32822035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome.
    Brasa S; Mueller A; Jacquemont S; Hahne F; Rozenberg I; Peters T; He Y; McCormack C; Gasparini F; Chibout SD; Grenet O; Moggs J; Gomez-Mancilla B; Terranova R
    Clin Epigenetics; 2016; 8():15. PubMed ID: 26855684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced immunological detection of epigenetic modifications of DNA in healthy and cancerous cells by fluorescence microscopy.
    Çelik-Uzuner S
    Microsc Res Tech; 2019 Nov; 82(11):1962-1972. PubMed ID: 31429164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA methylation and hydroxymethylation in stem cells.
    Cheng Y; Xie N; Jin P; Wang T
    Cell Biochem Funct; 2015 Jun; 33(4):161-73. PubMed ID: 25776144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic distribution and possible functions of DNA hydroxymethylation in the brain.
    Wen L; Tang F
    Genomics; 2014 Nov; 104(5):341-6. PubMed ID: 25205307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibody-Based Detection of Global Nuclear DNA Methylation in Cells, Tissue Sections, and Mammalian Embryos.
    Beaujean N; Salvaing J; Hadi NAA; Pennings S
    Methods Mol Biol; 2018; 1708():59-80. PubMed ID: 29224139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of 5-methylcytosine and 5-hydroxymethylcytosine as potential biomarkers for characterisation of chemical allergens.
    Chapman VL; Terranova R; Moggs JG; Kimber I; Dearman RJ
    Toxicology; 2016 Jan; 340():17-26. PubMed ID: 26732893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The elusive role of 5'-hydroxymethylcytosine.
    Szyf M
    Epigenomics; 2016 Nov; 8(11):1539-1551. PubMed ID: 27733056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic regulation of human adipose-derived stem cells differentiation.
    Daniunaite K; Serenaite I; Misgirdaite R; Gordevicius J; Unguryte A; Fleury-Cappellesso S; Bernotiene E; Jarmalaite S
    Mol Cell Biochem; 2015 Dec; 410(1-2):111-20. PubMed ID: 26307369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-Hydroxymethylcytosine in cord blood and associations of DNA methylation with sex in newborns.
    Solomon O; Macisaac JL; Tindula G; Kobor MS; Eskenazi B; Holland N
    Mutagenesis; 2019 Dec; 34(4):315-322. PubMed ID: 31587037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton irradiation induces persistent and tissue-specific DNA methylation changes in the left ventricle and hippocampus.
    Impey S; Pelz C; Tafessu A; Marzulla T; Turker MS; Raber J
    BMC Genomics; 2016 Mar; 17():273. PubMed ID: 27036964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-Cell and Inter-Chromosome Variability of 5-Hydroxymethylcytosine Patterns in Noncultured Human Embryonic and Extraembryonic Cells.
    Efimova OA; Pendina AA; Krapivin MI; Kopat VV; Tikhonov AV; Petrovskaia-Kaminskaia AV; Navodnikova PM; Talantova OE; Glotov OS; Baranov VS
    Cytogenet Genome Res; 2018; 156(3):150-157. PubMed ID: 30497063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in 5-hydroxymethylcytosine across human cortex and cerebellum.
    Lunnon K; Hannon E; Smith RG; Dempster E; Wong C; Burrage J; Troakes C; Al-Sarraj S; Kepa A; Schalkwyk L; Mill J
    Genome Biol; 2016 Feb; 17():27. PubMed ID: 26883014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos.
    Efimova OA; Pendina AA; Tikhonov AV; Fedorova ID; Krapivin MI; Chiryaeva OG; Shilnikova EM; Bogdanova MA; Kogan IY; Kuznetzova TV; Gzgzyan AM; Ailamazyan EK; Baranov VS
    Reproduction; 2015 Mar; 149(3):223-33. PubMed ID: 25504867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal methylome reveals CREB-associated neuro-axonal impairment in multiple sclerosis.
    Kular L; Needhamsen M; Adzemovic MZ; Kramarova T; Gomez-Cabrero D; Ewing E; Piket E; Tegnér J; Beck S; Piehl F; Brundin L; Jagodic M
    Clin Epigenetics; 2019 May; 11(1):86. PubMed ID: 31146783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.