BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31768972)

  • 1. Enzymatic Analysis of Reconstituted Archaeal Exosomes.
    Evguenieva-Hackenberg E; Gauernack AS; Hou L; Klug G
    Methods Mol Biol; 2020; 2062():63-79. PubMed ID: 31768972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nop5 interacts with the archaeal RNA exosome.
    Gauernack AS; Lassek C; Hou L; Dzieciolowski J; Evguenieva-Hackenberg E; Klug G
    FEBS Lett; 2017 Dec; 591(24):4039-4048. PubMed ID: 29159940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of the archaeal exosome.
    Evguenieva-Hackenberg E; Hou L; Glaeser S; Klug G
    Wiley Interdiscip Rev RNA; 2014; 5(5):623-35. PubMed ID: 24789718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The archaeal DnaG protein needs Csl4 for binding to the exosome and enhances its interaction with adenine-rich RNAs.
    Hou L; Klug G; Evguenieva-Hackenberg E
    RNA Biol; 2013 Mar; 10(3):415-24. PubMed ID: 23324612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of native and reconstituted exosome complexes from the hyperthermophilic archaeon Sulfolobus solfataricus.
    Walter P; Klein F; Lorentzen E; Ilchmann A; Klug G; Evguenieva-Hackenberg E
    Mol Microbiol; 2006 Nov; 62(4):1076-89. PubMed ID: 17078816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Archaeal DnaG contains a conserved N-terminal RNA-binding domain and enables tailing of rRNA by the exosome.
    Hou L; Klug G; Evguenieva-Hackenberg E
    Nucleic Acids Res; 2014 Nov; 42(20):12691-706. PubMed ID: 25326320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolutionarily conserved subunits Rrp4 and Csl4 confer different substrate specificities to the archaeal exosome.
    Roppelt V; Klug G; Evguenieva-Hackenberg E
    FEBS Lett; 2010 Jul; 584(13):2931-6. PubMed ID: 20488184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous complexes of the RNA exosome in Sulfolobus solfataricus.
    Witharana C; Roppelt V; Lochnit G; Klug G; Evguenieva-Hackenberg E
    Biochimie; 2012 Jul; 94(7):1578-87. PubMed ID: 22503705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The archaeal exosome.
    Evguenieva-Hackenberg E
    Adv Exp Med Biol; 2011; 702():29-38. PubMed ID: 21713675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rrp4 and Csl4 are needed for efficient degradation but not for polyadenylation of synthetic and natural RNA by the archaeal exosome.
    Evguenieva-Hackenberg E; Roppelt V; Finsterseifer P; Klug G
    Biochemistry; 2008 Dec; 47(50):13158-68. PubMed ID: 19053279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The archaeal exosome localizes to the membrane.
    Roppelt V; Hobel CF; Albers SV; Lassek C; Schwarz H; Klug G; Evguenieva-Hackenberg E
    FEBS Lett; 2010 Jul; 584(13):2791-5. PubMed ID: 20488181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation.
    Audin MJ; Wurm JP; Cvetkovic MA; Sprangers R
    Nucleic Acids Res; 2016 Apr; 44(6):2962-73. PubMed ID: 26837575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts.
    Märtens B; Hou L; Amman F; Wolfinger MT; Evguenieva-Hackenberg E; Bläsi U
    Nucleic Acids Res; 2017 Jul; 45(13):7938-7949. PubMed ID: 28520934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA channelling by the archaeal exosome.
    Lorentzen E; Dziembowski A; Lindner D; Seraphin B; Conti E
    EMBO Rep; 2007 May; 8(5):470-6. PubMed ID: 17380186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The archaeal exosome.
    Evguenieva-Hackenberg E
    Adv Exp Med Biol; 2010; 702():29-38. PubMed ID: 21618872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An exosome-like complex in Sulfolobus solfataricus.
    Evguenieva-Hackenberg E; Walter P; Hochleitner E; Lottspeich F; Klug G
    EMBO Rep; 2003 Sep; 4(9):889-93. PubMed ID: 12947419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular localization of RNA degrading proteins and protein complexes in prokaryotes.
    Evguenieva-Hackenberg E; Roppelt V; Lassek C; Klug G
    RNA Biol; 2011; 8(1):49-54. PubMed ID: 21289488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural framework for the mechanism of archaeal exosomes in RNA processing.
    Büttner K; Wenig K; Hopfner KP
    Mol Cell; 2005 Nov; 20(3):461-71. PubMed ID: 16285927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression, reconstitution, and structure of an archaeal RNA degrading exosome.
    Lorentzen E; Conti E
    Methods Enzymol; 2008; 447():417-35. PubMed ID: 19161854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of 3' end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core.
    Lorentzen E; Conti E
    Mol Cell; 2005 Nov; 20(3):473-81. PubMed ID: 16285928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.