These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31769210)

  • 1. Effects of interfacial crack and implant material on mixed-mode stress intensity factor and prediction of interface failure of cemented acetabular cup.
    Kumar A; Ghosh R; Kumar R
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):1844-1856. PubMed ID: 31769210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape optimization of metal backing for cemented acetabular cup.
    Hedia HS; Abdel-Shafi AA; Fouda N
    Biomed Mater Eng; 2000; 10(2):73-82. PubMed ID: 11086841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of the long-term fixation strength of cemented ceramic cups.
    Janssen D; Stolk J; Verdonschot N
    Proc Inst Mech Eng H; 2006 May; 220(4):533-9. PubMed ID: 16808069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The possibilities of uncemented glenoid component--a finite element study.
    Gupta S; van der Helm FC; van Keulen F
    Clin Biomech (Bristol, Avon); 2004 Mar; 19(3):292-302. PubMed ID: 15003345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A subject-specific pelvic bone model and its application to cemented acetabular replacements.
    Zhang QH; Wang JY; Lupton C; Heaton-Adegbile P; Guo ZX; Liu Q; Tong J
    J Biomech; 2010 Oct; 43(14):2722-7. PubMed ID: 20655051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone remodelling around cementless composite acetabular components: the effects of implant geometry and implant-bone interfacial conditions.
    Ghosh R; Gupta S
    J Mech Behav Biomed Mater; 2014 Apr; 32():257-269. PubMed ID: 24508712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of cement mantle thickness on strain energy density distribution and prediction of bone density changes around cemented acetabular component.
    Sanjay D; Mondal S; Bhutani R; Ghosh R
    Proc Inst Mech Eng H; 2018 Sep; 232(9):912-921. PubMed ID: 30105942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups--finite element simulations and experimental tests.
    Korhonen RK; Koistinen A; Konttinen YT; Santavirta SS; Lappalainen R
    Biomed Eng Online; 2005 May; 4():32. PubMed ID: 15904521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational assessment of the effect of polyethylene wear rate, mantle thickness, and porosity on the mechanical failure of the acetabular cement mantle.
    Coultrup OJ; Hunt C; Wroblewski BM; Taylor M
    J Orthop Res; 2010 May; 28(5):565-70. PubMed ID: 19950359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative finite element analysis of the debonding process in different concepts of cemented hip implants.
    Pérez MA; Palacios J
    Ann Biomed Eng; 2010 Jun; 38(6):2093-106. PubMed ID: 20232148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cement mantle stress under retroversion torque at heel-strike.
    Afsharpoya B; Barton DC; Fisher J; Purbach B; Wroblewski M; Stewart TD
    Med Eng Phys; 2009 Dec; 31(10):1323-30. PubMed ID: 19879794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of cup outer sizes on the contact mechanics and cement fixation of cemented total hip replacements.
    Hua X; Li J; Wang L; Wilcox R; Fisher J; Jin Z
    Med Eng Phys; 2015 Oct; 37(10):1008-14. PubMed ID: 26343226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical implications of interfacial defects between femoral hip implants and cement: a finite element analysis of interfacial gaps and interfacial porosity.
    Scheerlinck T; Broos J; Janssen D; Verdonschot N
    Proc Inst Mech Eng H; 2008 Oct; 222(7):1037-47. PubMed ID: 19024152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro fatigue failure of cemented acetabular replacements: a hip simulator study.
    Zant NP; Heaton-Adegbile P; Hussell JG; Tong J
    J Biomech Eng; 2008 Apr; 130(2):021019. PubMed ID: 18412506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fixation of the acetabular cup in cemented total hip replacement: improving the anchorage hole profile using finite element method.
    Mootanah R; Ingle P; Dowell J; Cheah K; Shelton JC
    Technol Health Care; 2000; 8(6):343-55. PubMed ID: 11258580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of crack propagation paths at implant/bone-cement interfaces.
    McCormack BA; Prendergast PJ
    J Biomech Eng; 1996 Nov; 118(4):579-85. PubMed ID: 8950663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual stresses at the stem-cement interface of an idealized cemented hip stem.
    Nuño N; Avanzolini G
    J Biomech; 2002 Jun; 35(6):849-52. PubMed ID: 12021006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone remodelling around uncemented metallic and ceramic acetabular components.
    Ghosh R; Mukherjee K; Gupta S
    Proc Inst Mech Eng H; 2013 May; 227(5):490-502. PubMed ID: 23637259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the fibrous tissue layer in cemented hip replacements: experimental and finite element methods.
    Waide V; Cristofolini L; Stolk J; Verdonschot N; Boogaard GJ; Toni A
    J Biomech; 2004 Jan; 37(1):13-26. PubMed ID: 14672564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analysis of the effect of cementing concepts on implant stability and cement fatigue failure.
    Janssen D; van Aken J; Scheerlinck T; Verdonschot N
    Acta Orthop; 2009 Jun; 80(3):319-24. PubMed ID: 19421913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.