These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31769470)

  • 61. Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth.
    Murphy GA; Solski PA; Jillian SA; Pérez de la Ossa P; D'Eustachio P; Der CJ; Rush MG
    Oncogene; 1999 Jul; 18(26):3831-45. PubMed ID: 10445846
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Phosphatidylinositol 3-Kinase (PI3K) and phosphatidylinositol 3-kinase-related kinase (PIKK) inhibitors: importance of the morpholine ring.
    Andrs M; Korabecny J; Jun D; Hodny Z; Bartek J; Kuca K
    J Med Chem; 2015 Jan; 58(1):41-71. PubMed ID: 25387153
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nuclear receptor-binding protein 1: a novel tumour suppressor and pseudokinase.
    Kerr JS; Wilson CH
    Biochem Soc Trans; 2013 Aug; 41(4):1055-60. PubMed ID: 23863178
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction.
    Fuchs M; Poirier DJ; Seguin SJ; Lambert H; Carra S; Charette SJ; Landry J
    Biochem J; 2009 Dec; 425(1):245-55. PubMed ID: 19845507
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cataloguing the dead: breathing new life into pseudokinase research.
    Shrestha S; Byrne DP; Harris JA; Kannan N; Eyers PA
    FEBS J; 2020 Oct; 287(19):4150-4169. PubMed ID: 32053275
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A new class of C. elegans synMuv genes implicates a Tip60/NuA4-like HAT complex as a negative regulator of Ras signaling.
    Ceol CJ; Horvitz HR
    Dev Cell; 2004 Apr; 6(4):563-76. PubMed ID: 15068795
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nucleotide-binding mechanisms in pseudokinases.
    Hammarén HM; Virtanen AT; Silvennoinen O
    Biosci Rep; 2015 Nov; 36(1):e00282. PubMed ID: 26589967
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Formation of a structurally-stable conformation by the intrinsically disordered MYC:TRRAP complex.
    Feris EJ; Hinds JW; Cole MD
    PLoS One; 2019; 14(12):e0225784. PubMed ID: 31790487
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Looking lively: emerging principles of pseudokinase signaling.
    Sheetz JB; Lemmon MA
    Trends Biochem Sci; 2022 Oct; 47(10):875-891. PubMed ID: 35585008
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dawn of the dead: protein pseudokinases signal new adventures in cell biology.
    Eyers PA; Murphy JM
    Biochem Soc Trans; 2013 Aug; 41(4):969-74. PubMed ID: 23863165
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Taking a holistic view of PEST-containing nuclear protein (PCNP) in cancer biology.
    Afzal A; Sarfraz M; Li GL; Ji SP; Duan SF; Khan NH; Wu DD; Ji XY
    Cancer Med; 2019 Oct; 8(14):6335-6343. PubMed ID: 31487123
    [TBL] [Abstract][Full Text] [Related]  

  • 72. TRRAP is a central regulator of human multiciliated cell formation.
    Wang Z; Plasschaert LW; Aryal S; Renaud NA; Yang Z; Choo-Wing R; Pessotti AD; Kirkpatrick ND; Cochran NR; Carbone W; Maher R; Lindeman A; Russ C; Reece-Hoyes J; McAllister G; Hoffman GR; Roma G; Jaffe AB
    J Cell Biol; 2018 Jun; 217(6):1941-1955. PubMed ID: 29588376
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Computational tools and resources for pseudokinase research.
    O'Boyle B; Shrestha S; Kochut K; Eyers PA; Kannan N
    Methods Enzymol; 2022; 667():403-426. PubMed ID: 35525549
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Prospects for pharmacological targeting of pseudokinases.
    Kung JE; Jura N
    Nat Rev Drug Discov; 2019 Jul; 18(7):501-526. PubMed ID: 30850748
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Methods to assess small molecule allosteric modulators of the STRAD pseudokinase.
    Qing T; Liu J; Liu F; Mitchell DC; Beresis RT; Gordan JD
    Methods Enzymol; 2022; 667():427-453. PubMed ID: 35525550
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Kinases and pseudokinases: lessons from RAF.
    Shaw AS; Kornev AP; Hu J; Ahuja LG; Taylor SS
    Mol Cell Biol; 2014 May; 34(9):1538-46. PubMed ID: 24567368
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pseudokinases: Prospects for expanding the therapeutic targets armamentarium.
    Devang N; Pani A; Rajanikant GK
    Adv Protein Chem Struct Biol; 2021; 124():121-185. PubMed ID: 33632464
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The PEAK family of pseudokinases, their role in cell signalling and cancer.
    Patel O; Roy MJ; Murphy JM; Lucet IS
    FEBS J; 2020 Oct; 287(19):4183-4197. PubMed ID: 31599110
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Protein AMPylation by an Evolutionarily Conserved Pseudokinase.
    Sreelatha A; Yee SS; Lopez VA; Park BC; Kinch LN; Pilch S; Servage KA; Zhang J; Jiou J; Karasiewicz-Urbańska M; Łobocka M; Grishin NV; Orth K; Kucharczyk R; Pawłowski K; Tomchick DR; Tagliabracci VS
    Cell; 2018 Oct; 175(3):809-821.e19. PubMed ID: 30270044
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Tribbles Pseudokinase 3 Regulation and Contribution to Cancer.
    Stefanovska B; André F; Fromigué O
    Cancers (Basel); 2021 Apr; 13(8):. PubMed ID: 33920424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.