These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 31769570)

  • 1. Enriched Surface Oxygen Vacancies of Photoanodes by Photoetching with Enhanced Charge Separation.
    Feng S; Wang T; Liu B; Hu C; Li L; Zhao ZJ; Gong J
    Angew Chem Int Ed Engl; 2020 Jan; 59(5):2044-2048. PubMed ID: 31769570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New BiVO
    Wang S; Chen P; Bai Y; Yun JH; Liu G; Wang L
    Adv Mater; 2018 May; 30(20):e1800486. PubMed ID: 29602201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressing photoinduced charge recombination at the BiVO
    Peng Y; Du M; Zou X; Jia G; Permatasari Santoso S; Peng X; Niu W; Yuan M; Hsu HY
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1116-1125. PubMed ID: 34749133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting the Performance of BiVO
    Sun Q; Ren K; Qi L
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37833-37842. PubMed ID: 35957577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Formation of Oxygen Vacancies Achieving Near-Complete Charge Separation in Planar BiVO
    Wang S; He T; Chen P; Du A; Ostrikov KK; Huang W; Wang L
    Adv Mater; 2020 Jul; 32(26):e2001385. PubMed ID: 32406092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Surface Reaction Kinetics and Charge Separation of p-n Heterojunction Co3O4/BiVO4 Photoanodes.
    Chang X; Wang T; Zhang P; Zhang J; Li A; Gong J
    J Am Chem Soc; 2015 Jul; 137(26):8356-9. PubMed ID: 26091246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting Charge Transport in BiVO
    Lu Y; Yang Y; Fan X; Li Y; Zhou D; Cai B; Wang L; Fan K; Zhang K
    Adv Mater; 2022 Feb; 34(8):e2108178. PubMed ID: 34902189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serial hole transfer layers for a BiVO
    Li L; Li J; Bai J; Zeng Q; Xia L; Zhang Y; Chen S; Xu Q; Zhou B
    Nanoscale; 2018 Oct; 10(38):18378-18386. PubMed ID: 30256370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A BiVO
    Liu B; Wang X; Zhang Y; Xu L; Wang T; Xiao X; Wang S; Wang L; Huang W
    Angew Chem Int Ed Engl; 2023 Mar; 62(10):e202217346. PubMed ID: 36642699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Synthesis of Ultrathin Ni:FeOOH with In Situ-Induced Oxygen Vacancies for Enhanced Water Oxidation Activity and Stability of BiVO
    Gaikwad MA; Ghorpade UV; Suryawanshi UP; Kumar PV; Jang S; Jang JS; Tran L; Lee JS; Bae H; Shin SW; Suryawanshi MP; Kim JH
    ACS Appl Mater Interfaces; 2023 May; 15(17):21123-21133. PubMed ID: 37083398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NiFe-bimetal-organic framework grafting oxygen-vacancy-rich BiVO
    Yang Y; Wan S; Wang R; Ou M; Fan X; Zhong Q
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):487-495. PubMed ID: 36088694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen-Vacancy-Introduced BaSnO
    Kim M; Lee B; Ju H; Kim JY; Kim J; Lee SW
    Adv Mater; 2019 Aug; 31(33):e1903316. PubMed ID: 31243820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Varying the Photoanode/Catalyst Interfacial Composition on Solar Water Oxidation: The Case of BiVO
    Hilbrands AM; Zhang S; Zhou C; Melani G; Wi DH; Lee D; Xi Z; Head AR; Liu M; Galli G; Choi KS
    J Am Chem Soc; 2023 Nov; 145(43):23639-23650. PubMed ID: 37850865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured WO3 /BiVO4 photoanodes for efficient photoelectrochemical water splitting.
    Pihosh Y; Turkevych I; Mawatari K; Asai T; Hisatomi T; Uemura J; Tosa M; Shimamura K; Kubota J; Domen K; Kitamori T
    Small; 2014 Sep; 10(18):3692-9. PubMed ID: 24863862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual modification of BiVO
    Yang L; Wang R; Zhou N; Liang D; Chu D; Deng C; Yu H; Lv J
    J Colloid Interface Sci; 2023 Feb; 631(Pt A):35-45. PubMed ID: 36368214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoelectrochemical Solar Water Splitting: The Role of the Carbon Nanomaterials in Bismuth Vanadate Composite Photoanodes toward Efficient Charge Separation and Transport.
    Prakash J; Prasad U; Alexander R; Bahadur J; Dasgupta K; Kannan ANM
    Langmuir; 2019 Nov; 35(45):14492-14504. PubMed ID: 31618038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement in the photoelectrochemical performance of BiVO
    Lu X; Xiao J; Peng L; Zhang L; Zhan G
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):726-735. PubMed ID: 35944303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Bicontinuous BiVO
    Kim K; Moon JH
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34238-34244. PubMed ID: 30265510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BiVO
    Xia L; Li J; Bai J; Li L; Chen S; Zhou B
    Nanomicro Lett; 2018; 10(1):11. PubMed ID: 30393660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting.
    Kim TW; Choi KS
    Science; 2014 Feb; 343(6174):990-4. PubMed ID: 24526312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.