These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 31769662)
1. Heavy-Metals-Mediated Phospholipids Scrambling by Human Phospholipid Scramblase 3: A Probable Role in Mitochondrial Apoptosis. Palanirajan SK; Gummadi SN Chem Res Toxicol; 2020 Feb; 33(2):553-564. PubMed ID: 31769662 [TBL] [Abstract][Full Text] [Related]
2. In vitro reconstitution and biochemical characterization of human phospholipid scramblase 3: phospholipid specificity and metal ion binding studies. Palanirajan SK; Sivagnanam U; Murugan S; Gummadi SN Biol Chem; 2018 Mar; 399(4):361-374. PubMed ID: 29337693 [TBL] [Abstract][Full Text] [Related]
3. Biochemical evidence for lead and mercury induced transbilayer movement of phospholipids mediated by human phospholipid scramblase 1. Shettihalli AK; Gummadi SN Chem Res Toxicol; 2013 Jun; 26(6):918-25. PubMed ID: 23659204 [TBL] [Abstract][Full Text] [Related]
4. Are cysteine residues of human phospholipid scramblase 1 essential for Pb Shettihalli AK; Palanirajan SK; Gummadi SN Eur Biophys J; 2021 Jul; 50(5):745-757. PubMed ID: 33787949 [TBL] [Abstract][Full Text] [Related]
5. Phospholipid scramblase 3: a latent mediator connecting mitochondria and heavy metal apoptosis. Palanirajan SK; Gummadi SN Cell Biochem Biophys; 2023 Sep; 81(3):443-458. PubMed ID: 37341933 [TBL] [Abstract][Full Text] [Related]
6. Calcium binding studies of peptides of human phospholipid scramblases 1 to 4 suggest that scramblases are new class of calcium binding proteins in the cell. Sahu SK; Aradhyam GK; Gummadi SN Biochim Biophys Acta; 2009 Oct; 1790(10):1274-81. PubMed ID: 19540310 [TBL] [Abstract][Full Text] [Related]
7. The role of human phospholipid scramblases in apoptosis: An overview. Sivagnanam U; Palanirajan SK; Gummadi SN Biochim Biophys Acta Mol Cell Res; 2017 Dec; 1864(12):2261-2271. PubMed ID: 28844836 [TBL] [Abstract][Full Text] [Related]
8. N-terminal proline-rich domain is required for scrambling activity of human phospholipid scramblases. Rayala S; Francis VG; Sivagnanam U; Gummadi SN J Biol Chem; 2014 May; 289(19):13206-18. PubMed ID: 24648509 [TBL] [Abstract][Full Text] [Related]
9. Recovery of functionally active recombinant human phospholipid scramblase 1 from inclusion bodies using N-lauroyl sarcosine. Francis VG; Majeed MA; Gummadi SN J Ind Microbiol Biotechnol; 2012 Jul; 39(7):1041-8. PubMed ID: 22389205 [TBL] [Abstract][Full Text] [Related]
10. Regulation of TMEM16A/ANO1 and TMEM16F/ANO6 ion currents and phospholipid scrambling by Ca Schreiber R; Ousingsawat J; Wanitchakool P; Sirianant L; Benedetto R; Reiss K; Kunzelmann K J Physiol; 2018 Jan; 596(2):217-229. PubMed ID: 29134661 [TBL] [Abstract][Full Text] [Related]
11. Over-expression of recombinant human phospholipid scramblase 1 in E. coli and its purification from inclusion bodies. Sahu SK; Gopala Krishna A; Gummadi SN Biotechnol Lett; 2008 Dec; 30(12):2131-7. PubMed ID: 18629440 [TBL] [Abstract][Full Text] [Related]
12. Biochemical and functional characterization of human phospholipid scramblase 4 (hPLSCR4). Francis VG; Gummadi SN Biol Chem; 2012 Oct; 393(10):1173-81. PubMed ID: 23089641 [TBL] [Abstract][Full Text] [Related]
13. The single C-terminal helix of human phospholipid scramblase 1 is required for membrane insertion and scrambling activity. Francis VG; Mohammed AM; Aradhyam GK; Gummadi SN FEBS J; 2013 Jun; 280(12):2855-69. PubMed ID: 23590222 [TBL] [Abstract][Full Text] [Related]
14. Rapid method for an enhanced recovery of biologically active human phospholipid scramblase1 from inclusion bodies. Palanirajan SK; Gummadi SN Anal Biochem; 2018 Sep; 556():104-111. PubMed ID: 29964029 [TBL] [Abstract][Full Text] [Related]
15. Molecular cloning and biochemical characterization of the phospholipid scramblase SCRM-1 from Caenorhabditis elegans. Koyiloth M; Gummadi SN Eur Biophys J; 2020 Mar; 49(2):163-173. PubMed ID: 32020261 [TBL] [Abstract][Full Text] [Related]
16. Change in conformation of plasma membrane phospholipid scramblase induced by occupancy of its Ca2+ binding site. Stout JG; Zhou Q; Wiedmer T; Sims PJ Biochemistry; 1998 Oct; 37(42):14860-6. PubMed ID: 9778361 [TBL] [Abstract][Full Text] [Related]
17. Phospholipid scramblase 3 controls mitochondrial structure, function, and apoptotic response. Liu J; Dai Q; Chen J; Durrant D; Freeman A; Liu T; Grossman D; Lee RM Mol Cancer Res; 2003 Oct; 1(12):892-902. PubMed ID: 14573790 [TBL] [Abstract][Full Text] [Related]
18. Biochemical evidence for Ca2+-independent functional activation of hPLSCR1 at low pH. Francis VG; Gummadi SN Cell Mol Biol Lett; 2015 Jun; 20(2):177-95. PubMed ID: 26204401 [TBL] [Abstract][Full Text] [Related]
19. Inhibition and stimulation of phospholipid scrambling activity. Consequences for lipid asymmetry, echinocytosis, and microvesiculation of erythrocytes. Kamp D; Sieberg T; Haest CW Biochemistry; 2001 Aug; 40(31):9438-46. PubMed ID: 11478914 [TBL] [Abstract][Full Text] [Related]
20. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Malvezzi M; Chalat M; Janjusevic R; Picollo A; Terashima H; Menon AK; Accardi A Nat Commun; 2013; 4():2367. PubMed ID: 23996062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]