These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites--influence of the graft length on the mechanical properties. Lönnberg H; Larsson K; Lindström T; Hult A; Malmström E ACS Appl Mater Interfaces; 2011 May; 3(5):1426-33. PubMed ID: 21473594 [TBL] [Abstract][Full Text] [Related]
5. Grafting of softwood kraft pulps fibers with fatty acids under cold plasma conditions. Popescu MC; Totolin M; Tibirna CM; Sdrobis A; Stevanovic T; Vasile C Int J Biol Macromol; 2011 Mar; 48(2):326-35. PubMed ID: 21182856 [TBL] [Abstract][Full Text] [Related]
6. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology. Sheikhi A; Yang H; Alam MN; van de Ven TG J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500560 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and solution behavior of poly(ε-caprolactone) grafted hydroxyethyl cellulose copolymers. Jiang C; Wang X; Sun P; Yang C Int J Biol Macromol; 2011 Jan; 48(1):210-4. PubMed ID: 21093476 [TBL] [Abstract][Full Text] [Related]
8. Green modification of cellulose-based natural materials by HRP-initiated controlled "graft from" polymerization. Bao X; Dong F; Yu Y; Wang Q; Wang P; Fan X; Yuan J Int J Biol Macromol; 2020 Dec; 164():1237-1245. PubMed ID: 32745552 [TBL] [Abstract][Full Text] [Related]
9. Biomass-based composites from poly(lactic acid) and wood flour by vapor-phase assisted surface polymerization. Kim D; Andou Y; Shirai Y; Nishida H ACS Appl Mater Interfaces; 2011 Feb; 3(2):385-91. PubMed ID: 21186811 [TBL] [Abstract][Full Text] [Related]
10. Extraordinary reinforcement effect of three-dimensionally nanoporous cellulose gels in poly(ε-caprolactone) bionanocomposites. Li K; Song J; Xu M; Kuga S; Zhang L; Cai J ACS Appl Mater Interfaces; 2014 May; 6(10):7204-13. PubMed ID: 24779576 [TBL] [Abstract][Full Text] [Related]
11. Toward Biocomposites Recycling: Localized Interphase Degradation in PCL-Cellulose Biocomposites and its Mitigation. Olsén P; Herrera N; Berglund LA Biomacromolecules; 2020 May; 21(5):1795-1801. PubMed ID: 31958232 [TBL] [Abstract][Full Text] [Related]
12. Unveiling Modifications of Biomass Polysaccharides during Thermal Treatment in Cholinium Chloride : Lactic Acid Deep Eutectic Solvent. Morais ES; Da Costa Lopes AM; Freire MG; Freire CSR; Silvestre AJD ChemSusChem; 2021 Jan; 14(2):686-698. PubMed ID: 33211400 [TBL] [Abstract][Full Text] [Related]
13. From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Goffin AL; Raquez JM; Duquesne E; Siqueira G; Habibi Y; Dufresne A; Dubois P Biomacromolecules; 2011 Jul; 12(7):2456-65. PubMed ID: 21623629 [TBL] [Abstract][Full Text] [Related]
14. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites. Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741 [TBL] [Abstract][Full Text] [Related]
15. Thermal Behavior of Green Cellulose-Filled Thermoplastic Elastomer Polymer Blends. Cichosz S; Masek A Molecules; 2020 Mar; 25(6):. PubMed ID: 32178229 [TBL] [Abstract][Full Text] [Related]
16. Self-associating cellulose-graft-poly(ε-caprolactone) to design nanoparticles for drug release. Zuppolini S; Maya IC; Diodato L; Guarino V; Borriello A; Ambrosio L Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110385. PubMed ID: 31923967 [TBL] [Abstract][Full Text] [Related]
17. A versatile strategy for grafting polymers to wood cell walls. Keplinger T; Cabane E; Chanana M; Hass P; Merk V; Gierlinger N; Burgert I Acta Biomater; 2015 Jan; 11():256-63. PubMed ID: 25242649 [TBL] [Abstract][Full Text] [Related]