These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31769684)

  • 1. Combining Molecular and Spin Dynamics Simulations with Solid-State NMR: A Case Study of Amphiphilic Lysine-Leucine Repeat Peptide Aggregates.
    Emani PS; Yimer YY; Davidowski SK; Gebhart RN; Ferreira HE; Kuprov I; Pfaendtner J; Drobny GP
    J Phys Chem B; 2019 Dec; 123(51):10915-10929. PubMed ID: 31769684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silica morphogenesis by lysine-leucine peptides with hydrophobic periodicity.
    Zane AC; Michelet C; Roehrich A; Emani PS; Drobny GP
    Langmuir; 2014 Jun; 30(24):7152-61. PubMed ID: 24896500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A solid-state deuterium NMR and sum-frequency generation study of the side-chain dynamics of peptides adsorbed onto surfaces.
    Breen NF; Weidner T; Li K; Castner DG; Drobny GP
    J Am Chem Soc; 2009 Oct; 131(40):14148-9. PubMed ID: 19764755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sum frequency generation and solid-state NMR study of the structure, orientation, and dynamics of polystyrene-adsorbed peptides.
    Weidner T; Breen NF; Li K; Drobny GP; Castner DG
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13288-93. PubMed ID: 20628016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid state deuterium NMR study of LKα14 peptide aggregation in biosilica.
    Ferreira HE; Drobny GP
    Biointerphases; 2017 Jun; 12(2):02D418. PubMed ID: 28655279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Best of Two Worlds? How MD Simulations of Amphiphilic Helical Peptides in Membranes Can Complement Data from Oriented Solid-State NMR.
    Reißer S; Strandberg E; Steinbrecher T; Elstner M; Ulrich AS
    J Chem Theory Comput; 2018 Nov; 14(11):6002-6014. PubMed ID: 30289704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy.
    Helmus JJ; Nadaud PS; Höfer N; Jaroniec CP
    J Chem Phys; 2008 Feb; 128(5):052314. PubMed ID: 18266431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics, Explained.
    Franck JM; Han S
    Methods Enzymol; 2019; 615():131-175. PubMed ID: 30638529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting NMR relaxation of proteins from molecular dynamics simulations with accurate methyl rotation barriers.
    Hoffmann F; Mulder FAA; Schäfer LV
    J Chem Phys; 2020 Feb; 152(8):084102. PubMed ID: 32113361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-free estimation of the effective correlation time for C-H bond reorientation in amphiphilic bilayers: (1)H-(13)C solid-state NMR and MD simulations.
    Ferreira TM; Ollila OH; Pigliapochi R; Dabkowska AP; Topgaard D
    J Chem Phys; 2015 Jan; 142(4):044905. PubMed ID: 25638007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast collective motions of backbone in transmembrane α helices are critical to water transfer of aquaporin.
    Tan H; Duan M; Xie H; Zhao Y; Liu H; Yang M; Liu M; Yang J
    Sci Adv; 2024 May; 10(19):eade9520. PubMed ID: 38718112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accounting for the temperature dependence of
    Phan VC; Fry EA; Zilm KW
    J Biomol NMR; 2019 Sep; 73(8-9):411-421. PubMed ID: 31407207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of leucine-lysine peptide adsorption and desorption at -CH3 and -COOH terminated alkylthiolate monolayers.
    Apte JS; Gamble LJ; Castner DG; Campbell CT
    Biointerphases; 2010 Dec; 5(4):97-104. PubMed ID: 21219030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Narrowing the gap between experimental and computational determination of methyl group dynamics in proteins.
    Hoffmann F; Xue M; Schäfer LV; Mulder FAA
    Phys Chem Chem Phys; 2018 Oct; 20(38):24577-24590. PubMed ID: 30226234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using molecular dynamics trajectories to predict nuclear spin relaxation behaviour in large spin systems.
    Kuprov I; Morris LC; Glushka JN; Prestegard JH
    J Magn Reson; 2021 Feb; 323():106891. PubMed ID: 33445107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of protein dynamics by MD simulations and NMR spin-relaxation.
    Trbovic N; Kim B; Friesner RA; Palmer AG
    Proteins; 2008 May; 71(2):684-94. PubMed ID: 17975832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations.
    Liu Q; Shi C; Yu L; Zhang L; Xiong Y; Tian C
    Biochem Biophys Res Commun; 2015 Feb; 457(3):467-72. PubMed ID: 25600810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deuterium magic angle spinning NMR used to study the dynamics of peptides adsorbed onto polystyrene and functionalized polystyrene surfaces.
    Breen NF; Li K; Olsen GL; Drobny GP
    J Phys Chem B; 2011 Aug; 115(30):9452-60. PubMed ID: 21650191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Methyl Group Dynamics in Proteins by NMR Cross-Correlated Dipolar Relaxation and Molecular Dynamics Simulations.
    Ali AAAI; Hoffmann F; Schäfer LV; Mulder FAA
    J Chem Theory Comput; 2022 Dec; 18(12):7722-7732. PubMed ID: 36326619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein side-chain dynamics as observed by solution- and solid-state NMR spectroscopy: a similarity revealed.
    Agarwal V; Xue Y; Reif B; Skrynnikov NR
    J Am Chem Soc; 2008 Dec; 130(49):16611-21. PubMed ID: 19049457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.