These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31769961)
21. On the Electron-Transfer Mechanism in the Contact-Electrification Effect. Xu C; Zi Y; Wang AC; Zou H; Dai Y; He X; Wang P; Wang YC; Feng P; Li D; Wang ZL Adv Mater; 2018 Apr; 30(15):e1706790. PubMed ID: 29508454 [TBL] [Abstract][Full Text] [Related]
22. Particle size effects in particle-particle triboelectric charging studied with an integrated fluidized bed and electrostatic separator system. Bilici MA; Toth JR; Sankaran RM; Lacks DJ Rev Sci Instrum; 2014 Oct; 85(10):103903. PubMed ID: 25362412 [TBL] [Abstract][Full Text] [Related]
23. Maximum conductivity of packed nanoparticles and their polymer composites. Untereker D; Lyu S; Schley J; Martinez G; Lohstreter L ACS Appl Mater Interfaces; 2009 Jan; 1(1):97-101. PubMed ID: 20355760 [TBL] [Abstract][Full Text] [Related]
24. Contact de-electrification of electrostatically charged polymers. Soh S; Kwok SW; Liu H; Whitesides GM J Am Chem Soc; 2012 Dec; 134(49):20151-9. PubMed ID: 23153329 [TBL] [Abstract][Full Text] [Related]
25. Highly Stretchable Room-Temperature Self-Healing Conductors Based on Wrinkled Graphene Films for Flexible Electronics. Yan S; Zhang G; Jiang H; Li F; Zhang L; Xia Y; Wang Z; Wu Y; Li H ACS Appl Mater Interfaces; 2019 Mar; 11(11):10736-10744. PubMed ID: 30801171 [TBL] [Abstract][Full Text] [Related]
26. Organic Charge Transfer Cocrystals as Additives for Dissipation of Contact Charges on Polymers. Ekim SD; Kaya GE; Daştemir M; Yildirim E; Baytekin HT; Baytekin B ACS Appl Mater Interfaces; 2022 Dec; 14(50):56018-56026. PubMed ID: 36472348 [TBL] [Abstract][Full Text] [Related]
27. Skin-Inspired Electronics: An Emerging Paradigm. Wang S; Oh JY; Xu J; Tran H; Bao Z Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379 [TBL] [Abstract][Full Text] [Related]
28. Triboelectric Charging Properties of the Functional Groups of Common Pharmaceutical Materials Using Density Functional Theory Calculations. Middleton JR; Ghadiri M; Scott AJ Pharmaceutics; 2024 Mar; 16(3):. PubMed ID: 38543327 [TBL] [Abstract][Full Text] [Related]
29. Single-Collision Statistics Reveal a Global Mechanism Driven by Sample History for Contact Electrification in Granular Media. Grosjean G; Waitukaitis S Phys Rev Lett; 2023 Mar; 130(9):098202. PubMed ID: 36930925 [TBL] [Abstract][Full Text] [Related]
30. An Evaluation System for the Contact Electrification of a Single Microparticle Using Microelectromechanical-Based Actuated Tweezers. Yamaguchi D Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874856 [TBL] [Abstract][Full Text] [Related]
31. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires. Cheng Y; Wang R; Sun J; Gao L ACS Nano; 2015 Apr; 9(4):3887-95. PubMed ID: 25808756 [TBL] [Abstract][Full Text] [Related]
32. Manipulating nanoscale contact electrification by an applied electric field. Zhou YS; Wang S; Yang Y; Zhu G; Niu S; Lin ZH; Liu Y; Wang ZL Nano Lett; 2014 Mar; 14(3):1567-72. PubMed ID: 24479730 [TBL] [Abstract][Full Text] [Related]
33. Wind-blown Sand Electrification Inspired Triboelectric Energy Harvesting Based on Homogeneous Inorganic Materials Contact: A Theoretical Study and Prediction. Hu W; Wu W; Zhou HM Sci Rep; 2016 Jan; 6():19912. PubMed ID: 26817411 [TBL] [Abstract][Full Text] [Related]
34. Contact electrification between identical polymers as the basis for triboelectric/flexoelectric materials. Šutka A; Mālnieks K; Lapčinskis L; Timusk M; Kalniņš K; Kovaļovs A; Bitenieks J; Knite M; Stevens D; Grunlan J Phys Chem Chem Phys; 2020 Jun; 22(23):13299-13305. PubMed ID: 32507872 [TBL] [Abstract][Full Text] [Related]
36. Contact Electrification of Biological and Bio-Inspired Adhesive Materials on SiO Tao J; Wang L; Kong K; Hu M; Dai Z Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36546916 [TBL] [Abstract][Full Text] [Related]
37. A combined experimental and numerical approach to explore tribocharging of pharmaceutical excipients in a hopper chute assembly. Naik S; Sarkar S; Gupta V; Hancock BC; Abramov Y; Yu W; Chaudhuri B Int J Pharm; 2015 Aug; 491(1-2):58-68. PubMed ID: 26043824 [TBL] [Abstract][Full Text] [Related]
38. Contact electrification through interfacial charge transfer: a mechanistic viewpoint on solid-liquid interfaces. Panda PK; Singh D; Köhler MH; de Vargas DD; Wang ZL; Ahuja R Nanoscale Adv; 2022 Feb; 4(3):884-893. PubMed ID: 36131814 [TBL] [Abstract][Full Text] [Related]
39. Material transfer and polarity reversal in contact charging. Baytekin HT; Baytekin B; Incorvati JT; Grzybowski BA Angew Chem Int Ed Engl; 2012 May; 51(20):4843-7. PubMed ID: 22422707 [TBL] [Abstract][Full Text] [Related]
40. Tuning the Charge of Sliding Water Drops. Wong WSY; Bista P; Li X; Veith L; Sharifi-Aghili A; Weber SAL; Butt HJ Langmuir; 2022 May; 38(19):6224-6230. PubMed ID: 35500291 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]