These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Peptide-Tethered Hydrogel Scaffold Promotes Recovery from Spinal Cord Transection via Synergism with Mesenchymal Stem Cells. Li LM; Han M; Jiang XC; Yin XZ; Chen F; Zhang TY; Ren H; Zhang JW; Hou TJ; Chen Z; Ou-Yang HW; Tabata Y; Shen YQ; Gao JQ ACS Appl Mater Interfaces; 2017 Feb; 9(4):3330-3342. PubMed ID: 28058831 [TBL] [Abstract][Full Text] [Related]
4. Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair. Zaviskova K; Tukmachev D; Dubisova J; Vackova I; Hejcl A; Bystronova J; Pravda M; Scigalkova I; Sulakova R; Velebny V; Wolfova L; Kubinova S J Biomed Mater Res A; 2018 Apr; 106(4):1129-1140. PubMed ID: 29266693 [TBL] [Abstract][Full Text] [Related]
5. Implantation of a functional TEMPO-hydrogel induces recovery from rat spinal cord transection through promoting nerve regeneration and protecting bladder tissue. Zhang Y; Li L; Mu J; Chen J; Feng S; Gao J Biomater Sci; 2020 Mar; 8(6):1695-1701. PubMed ID: 31989134 [TBL] [Abstract][Full Text] [Related]
6. ROS-Scavenging Hydrogels Synergize with Neural Stem Cells to Enhance Spinal Cord Injury Repair via Regulating Microenvironment and Facilitating Nerve Regeneration. Liu D; Lu G; Shi B; Ni H; Wang J; Qiu Y; Yang L; Zhu Z; Yi X; Du X; Shi B Adv Healthc Mater; 2023 Jul; 12(18):e2300123. PubMed ID: 36989238 [TBL] [Abstract][Full Text] [Related]
7. Bone marrow mesenchymal stem cells encapsulated thermal-responsive hydrogel network bridges combined photo-plasmonic nanoparticulate system for the treatment of urinary bladder dysfunction after spinal cord injury. An H; Li Q; Wen J J Photochem Photobiol B; 2020 Jan; 203():111741. PubMed ID: 31901721 [TBL] [Abstract][Full Text] [Related]
8. Nanozyme-Integrated Thermoresponsive Xu L; Mu J; Ma Z; Lin P; Xia F; Hu X; Wu J; Cao J; Liu S; Huang T; Ling D; Gao J; Li F ACS Appl Mater Interfaces; 2023 Aug; 15(31):37193-37204. PubMed ID: 37493513 [TBL] [Abstract][Full Text] [Related]
9. Injectable Hydrogel Loaded with CDs and FTY720 Combined with Neural Stem Cells for the Treatment of Spinal Cord Injury. Qi Z; Pan S; Yang X; Zhang R; Qin C; Yan H; Zhu L; Kong W Int J Nanomedicine; 2024; 19():4081-4101. PubMed ID: 38736654 [TBL] [Abstract][Full Text] [Related]
10. Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury. Li Y; Cheng S; Wen H; Xiao L; Deng Z; Huang J; Zhang Z Acta Biomater; 2023 Sep; 168():400-415. PubMed ID: 37479156 [TBL] [Abstract][Full Text] [Related]
11. An integrated long-acting implant of clinical safe cells, drug and biomaterials effectively promotes spinal cord repair and restores motor functions. Li L; Mu J; Chen J; Huang T; Zhang Y; Cai Y; Zhang T; Kong X; Sun J; Jiang X; Wu J; Cao J; Zhang X; Huang F; Feng S; Gao J J Control Release; 2024 Nov; 375():236-248. PubMed ID: 39245419 [TBL] [Abstract][Full Text] [Related]
12. HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Hejcl A; Sedý J; Kapcalová M; Toro DA; Amemori T; Lesný P; Likavcanová-Mašínová K; Krumbholcová E; Prádný M; Michálek J; Burian M; Hájek M; Jendelová P; Syková E Stem Cells Dev; 2010 Oct; 19(10):1535-46. PubMed ID: 20053128 [TBL] [Abstract][Full Text] [Related]
13. Electro-acupuncture promotes differentiation of mesenchymal stem cells, regeneration of nerve fibers and partial functional recovery after spinal cord injury. Yan Q; Ruan JW; Ding Y; Li WJ; Li Y; Zeng YS Exp Toxicol Pathol; 2011 Jan; 63(1-2):151-6. PubMed ID: 20005688 [TBL] [Abstract][Full Text] [Related]
14. Reactive Oxygen Species Scavenging Injectable Hydrogel Potentiates the Therapeutic Potential of Mesenchymal Stem Cells in Skin Flap Regeneration. Chen J; Pan C; Gao Y; Chen Q; An X; Liu Z ACS Appl Mater Interfaces; 2024 Apr; 16(14):17120-17128. PubMed ID: 38554083 [TBL] [Abstract][Full Text] [Related]
15. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. Wang N; Xiao Z; Zhao Y; Wang B; Li X; Li J; Dai J J Tissue Eng Regen Med; 2018 Feb; 12(2):e1154-e1163. PubMed ID: 28482124 [TBL] [Abstract][Full Text] [Related]
16. Transplantation of Human Mesenchymal Stem-Cell-Derived Exosomes Immobilized in an Adhesive Hydrogel for Effective Treatment of Spinal Cord Injury. Li L; Zhang Y; Mu J; Chen J; Zhang C; Cao H; Gao J Nano Lett; 2020 Jun; 20(6):4298-4305. PubMed ID: 32379461 [TBL] [Abstract][Full Text] [Related]
17. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor. Park J; Lim E; Back S; Na H; Park Y; Sun K J Biomed Mater Res A; 2010 Jun; 93(3):1091-9. PubMed ID: 19768787 [TBL] [Abstract][Full Text] [Related]
18. Dual-enzymatically cross-linked gelatin hydrogel enhances neural differentiation of human umbilical cord mesenchymal stem cells and functional recovery in experimental murine spinal cord injury. Yao M; Li J; Zhang J; Ma S; Wang L; Gao F; Guan F J Mater Chem B; 2021 Jan; 9(2):440-452. PubMed ID: 33289773 [TBL] [Abstract][Full Text] [Related]
19. Mesenchymal Stem Cell-Laden Hydrogel Microfibers for Promoting Nerve Fiber Regeneration in Long-Distance Spinal Cord Transection Injury. Yao S; He F; Cao Z; Sun Z; Chen Y; Zhao H; Yu X; Wang X; Yang Y; Rosei F; Wang LN ACS Biomater Sci Eng; 2020 Feb; 6(2):1165-1175. PubMed ID: 33464837 [TBL] [Abstract][Full Text] [Related]
20. Self-assembled GFFYK peptide hydrogel enhances the therapeutic efficacy of mesenchymal stem cells in a mouse hindlimb ischemia model. Huang A; Liu D; Qi X; Yue Z; Cao H; Zhang K; Lei X; Wang Y; Kong D; Gao J; Li Z; Liu N; Wang Y Acta Biomater; 2019 Feb; 85():94-105. PubMed ID: 30550934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]