These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31770466)

  • 1. A chemical dynamic model for the infiltration of outdoor size-resolved ammonium nitrate aerosols to indoor environments.
    Xie Y; Zhao B
    Indoor Air; 2020 Mar; 30(2):275-283. PubMed ID: 31770466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated measurements of ammonia and nitric acid in indoor and outdoor air.
    Fischer ML; Littlejohn D; Lunden MM; Brown NJ
    Environ Sci Technol; 2003 May; 37(10):2114-9. PubMed ID: 12785515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between airborne acidity and ammonia in indoor environments.
    Suh HH; Koutrakis P; Spengler JD
    J Expo Anal Environ Epidemiol; 1994; 4(1):1-22. PubMed ID: 7894266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A significant role for nitrate and peroxide groups on indoor secondary organic aerosol.
    Carslaw N; Mota T; Jenkin ME; Barley MH; McFiggans G
    Environ Sci Technol; 2012 Sep; 46(17):9290-8. PubMed ID: 22881450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal variation in aerosol composition and concentration upon transport from the outdoor to indoor environment.
    Avery AM; Waring MS; DeCarlo PF
    Environ Sci Process Impacts; 2019 Mar; 21(3):528-547. PubMed ID: 30698188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.
    Miller SL; Facciola NA; Toohey D; Zhai J
    Int J Environ Res Public Health; 2017 Jan; 14(2):. PubMed ID: 28134841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time characterization of aerosol particle composition, sources and influences of increased ventilation and humidity in an office.
    Li J; Xu W; Li Z; Duan M; Ouyang B; Zhou S; Lei L; He Y; Sun J; Wang Z; Du L; Sun Y
    Indoor Air; 2021 Sep; 31(5):1364-1376. PubMed ID: 33876836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of time- and chemically resolved particulate data to characterize the infiltration of outdoor PM2.5 into a residence in the San Joaquin Valley.
    Lunden MM; Thatcher TL; Hering SV; Brown NJ
    Environ Sci Technol; 2003 Oct; 37(20):4724-32. PubMed ID: 14594384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to inhalable aerosols and their chemical characteristics from different potential factors in urban office environments.
    Oh HJ; Jeong NN; Sohn JR; Roh JS; Kim J
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21750-21759. PubMed ID: 31134538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating indoor inorganic aerosols of outdoor origin with the inorganic aerosol thermodynamic equilibrium model ISORROPIA.
    Berman BC; Cummings BE; Avery AM; DeCarlo PF; Capps SL; Waring MS
    Indoor Air; 2022 Jul; 32(7):e13075. PubMed ID: 35904391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time transformation of outdoor aerosol components upon transport indoors measured with aerosol mass spectrometry.
    Johnson AM; Waring MS; DeCarlo PF
    Indoor Air; 2017 Jan; 27(1):230-240. PubMed ID: 27008502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity analyses of factors influencing CMAQ performance for fine particulate nitrate.
    Shimadera H; Hayami H; Chatani S; Morino Y; Mori Y; Morikawa T; Yamaji K; Ohara T
    J Air Waste Manag Assoc; 2014 Apr; 64(4):374-87. PubMed ID: 24843910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redistribution of PM
    Liu C; Wang H; Guo H
    Indoor Air; 2019 May; 29(3):460-468. PubMed ID: 30807668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Predictions of Indoor Aerosol Concentrations of Outdoor Origin by Considering the Phase Change of Semivolatile Material Driven by Temperature and Mass-Loading Gradients.
    Cummings BE; Avery AM; DeCarlo PF; Waring MS
    Environ Sci Technol; 2021 Jul; 55(13):9000-9011. PubMed ID: 34106692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Ammonia Emission Rates under Various Indoor Environmental Conditions.
    Li M; Weschler CJ; Bekö G; Wargocki P; Lucic G; Williams J
    Environ Sci Technol; 2020 May; 54(9):5419-5428. PubMed ID: 32233434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary organic aerosol in residences: predicting its fraction of fine particle mass and determinants of formation strength.
    Waring MS
    Indoor Air; 2014 Aug; 24(4):376-89. PubMed ID: 24387324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Dust particles and metals in outdoor and indoor air of Upper Silesia].
    Górny RL; Jedrzejczak A; Pastuszka JS
    Rocz Panstw Zakl Hig; 1995; 46(2):151-61. PubMed ID: 8533033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences.
    Sarnat SE; Coull BA; Ruiz PA; Koutrakis P; Suh HH
    J Air Waste Manag Assoc; 2006 Feb; 56(2):186-96. PubMed ID: 16568802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.