These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 31770659)
1. Reward learning biases the direction of saccades. Liao MR; Anderson BA Cognition; 2020 Mar; 196():104145. PubMed ID: 31770659 [TBL] [Abstract][Full Text] [Related]
2. Value-modulated oculomotor capture by task-irrelevant stimuli is a consequence of early competition on the saccade map. Pearson D; Osborn R; Whitford TJ; Failing M; Theeuwes J; Le Pelley ME Atten Percept Psychophys; 2016 Oct; 78(7):2226-40. PubMed ID: 27184056 [TBL] [Abstract][Full Text] [Related]
3. Effects of reward expectancy on sequential eye movements in monkeys. Sohn JW; Lee D Neural Netw; 2006 Oct; 19(8):1181-91. PubMed ID: 16935467 [TBL] [Abstract][Full Text] [Related]
4. Selective reward affects the rate of saccade adaptation. Kojima Y; Soetedjo R Neuroscience; 2017 Jul; 355():113-125. PubMed ID: 28499971 [TBL] [Abstract][Full Text] [Related]
8. Neurons in the supplementary eye field of rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system. Russo GS; Bruce CJ J Neurophysiol; 1996 Aug; 76(2):825-48. PubMed ID: 8871203 [TBL] [Abstract][Full Text] [Related]
9. Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. Goldberg ME; Bruce CJ J Neurophysiol; 1990 Aug; 64(2):489-508. PubMed ID: 2213128 [TBL] [Abstract][Full Text] [Related]
10. Supplementary motor area encodes reward expectancy in eye-movement tasks. Campos M; Breznen B; Bernheim K; Andersen RA J Neurophysiol; 2005 Aug; 94(2):1325-35. PubMed ID: 15843484 [TBL] [Abstract][Full Text] [Related]
12. Properties of signals that determine the amplitude and direction of saccadic eye movements in monkeys. McKenzie A; Lisberger SG J Neurophysiol; 1986 Jul; 56(1):196-207. PubMed ID: 3746396 [TBL] [Abstract][Full Text] [Related]
13. Visual search training benefits from the integrative effect of enhanced covert attention and optimized overt eye movements. Zhang Q; Huang Z; Li L; Li S J Vis; 2022 Jul; 22(8):7. PubMed ID: 35838486 [TBL] [Abstract][Full Text] [Related]
14. Optimal and human eye movements to clustered low value cues to increase decision rewards during search. Eckstein MP; Schoonveld W; Zhang S; Mack SC; Akbas E Vision Res; 2015 Aug; 113(Pt B):137-54. PubMed ID: 26093154 [TBL] [Abstract][Full Text] [Related]
16. To look or not to look? Reward, selection history, and oculomotor guidance. Preciado D; Theeuwes J J Neurophysiol; 2018 Oct; 120(4):1740-1752. PubMed ID: 30020840 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of macaque lateral intraparietal area delays initiation of the second saccade predominantly from contralesional eye positions in a double-saccade task. Li CS; Andersen RA Exp Brain Res; 2001 Mar; 137(1):45-57. PubMed ID: 11310171 [TBL] [Abstract][Full Text] [Related]
18. Neural correlates of rewarded and unrewarded eye movements in the primate caudate nucleus. Watanabe K; Lauwereyns J; Hikosaka O J Neurosci; 2003 Nov; 23(31):10052-7. PubMed ID: 14602819 [TBL] [Abstract][Full Text] [Related]
19. Increased preparation time reduces, but does not abolish, action history bias of saccadic eye movements. Reuter EM; Marinovic W; Welsh TN; Carroll TJ J Neurophysiol; 2019 Apr; 121(4):1478-1490. PubMed ID: 30785812 [TBL] [Abstract][Full Text] [Related]
20. Domain Specificity of Oculomotor Learning after Changes in Sensory Processing. Tsank Y; Eckstein MP J Neurosci; 2017 Nov; 37(47):11469-11484. PubMed ID: 29054879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]