BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31770683)

  • 1. What underlies visual selective attention development? Evidence that age-related improvements in visual feature integration influence visual selective attention performance.
    Lynn A; Festa EK; Heindel WC; Amso D
    J Exp Child Psychol; 2020 Mar; 191():104732. PubMed ID: 31770683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual and cognitive processes contribute to age-related improvements in visual selective attention.
    Lynn A; Maule J; Amso D
    Child Dev; 2024; 95(2):391-408. PubMed ID: 37614012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual search for singleton targets redundantly defined in two feature dimensions: Coactive processing of color-motion targets?
    Krummenacher J; Müller HJ
    J Exp Psychol Hum Percept Perform; 2014 Oct; 40(5):1926-39. PubMed ID: 25089576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual and central attention share a capacity limitation when the demands for serial item selection in visual search are high.
    Reimer CB; Schubert T
    Atten Percept Psychophys; 2020 Feb; 82(2):715-728. PubMed ID: 31974939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.
    Andersen SK; Müller MM; Hillyard SA
    J Neurosci; 2015 Jul; 35(27):9912-9. PubMed ID: 26156992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of task-irrelevant grouping on visual selection in partial report.
    Lunau R; Habekost T
    Atten Percept Psychophys; 2017 Jul; 79(5):1323-1335. PubMed ID: 28364367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The time course of selective visual attention: theory and experiments.
    Deco G; Pollatos O; Zihl J
    Vision Res; 2002 Dec; 42(27):2925-45. PubMed ID: 12450503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When are abrupt onsets found efficiently in complex visual search? Evidence from multielement asynchronous dynamic search.
    Kunar MA; Watson DG
    J Exp Psychol Hum Percept Perform; 2014 Feb; 40(1):232-52. PubMed ID: 23875577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Search asymmetry and eye movements in infants and adults.
    Adler SA; Gallego P
    Atten Percept Psychophys; 2014 Aug; 76(6):1590-608. PubMed ID: 24858309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency and accuracy of visual search develop at different rates from early childhood through early adulthood.
    Gil-Gómez de Liaño B; Quirós-Godoy M; Pérez-Hernández E; Wolfe JM
    Psychon Bull Rev; 2020 Jun; 27(3):504-511. PubMed ID: 32043221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Priming of luminance-defined motion direction in visual search.
    Kristjánsson A; Bjarnason A; Hjaltason AB; Stefánsdóttir BG
    Atten Percept Psychophys; 2009 Jul; 71(5):1027-41. PubMed ID: 19525535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature similarity is non-linearly related to attentional selection: Evidence from visual search and sustained attention tasks.
    Chapman AF; Störmer VS
    J Vis; 2022 Jul; 22(8):4. PubMed ID: 35834377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irrelevant reward and selection histories have different influences on task-relevant attentional selection.
    MacLean MH; Giesbrecht B
    Atten Percept Psychophys; 2015 Jul; 77(5):1515-28. PubMed ID: 25813737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attentional and oculomotor capture by onset, luminance and color singletons.
    Irwin DE; Colcombe AM; Kramer AF; Hahn S
    Vision Res; 2000; 40(10-12):1443-58. PubMed ID: 10788651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. You see what you have learned. Evidence for an interrelation of associative learning and visual selective attention.
    Feldmann-Wüstefeld T; Uengoer M; Schubö A
    Psychophysiology; 2015 Nov; 52(11):1483-97. PubMed ID: 26338030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccade target selection in macaque during feature and conjunction visual search.
    Bichot NP; Schall JD
    Vis Neurosci; 1999; 16(1):81-9. PubMed ID: 10022480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A feature and conjunction visual search immersive virtual reality serious game for measuring spatial and distractor inhibition attention using response time and action kinematics.
    Ajana K; Everard G; Lejeune T; Edwards MG
    J Clin Exp Neuropsychol; 2023 May; 45(3):292-303. PubMed ID: 37260369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural mechanisms of feature conjunction learning: enduring changes in occipital cortex after a week of training.
    Frank SM; Reavis EA; Tse PU; Greenlee MW
    Hum Brain Mapp; 2014 Apr; 35(4):1201-11. PubMed ID: 23418123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Color and luminance contrasts attract independent attention.
    Morrone MC; Denti V; Spinelli D
    Curr Biol; 2002 Jul; 12(13):1134-7. PubMed ID: 12121622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Category-based guidance of spatial attention during visual search for feature conjunctions.
    Nako R; Grubert A; Eimer M
    J Exp Psychol Hum Percept Perform; 2016 Oct; 42(10):1571-86. PubMed ID: 27213833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.