These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31770745)

  • 21. Strong coupling between localized and propagating plasmon polaritons.
    Balci S; Karademir E; Kocabas C
    Opt Lett; 2015 Jul; 40(13):3177-80. PubMed ID: 26125396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmon blockade in nanostructured graphene.
    Manjavacas A; Nordlander P; García de Abajo FJ
    ACS Nano; 2012 Feb; 6(2):1724-31. PubMed ID: 22224435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exciton Dipole Orientation of Strain-Induced Quantum Emitters in WSe
    Luo Y; Liu N; Kim B; Hone J; Strauf S
    Nano Lett; 2020 Jul; 20(7):5119-5126. PubMed ID: 32551697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Steering Room-Temperature Plexcitonic Strong Coupling: A Diexcitonic Perspective.
    Zhang W; You JB; Liu J; Xiong X; Li Z; Png CE; Wu L; Qiu CW; Zhou ZK
    Nano Lett; 2021 Nov; 21(21):8979-8986. PubMed ID: 34644095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupling of a dipolar emitter into one-dimensional surface plasmon.
    Barthes J; Bouhelier A; Dereux A; Colas des Francs G
    Sci Rep; 2013; 3():2734. PubMed ID: 24061164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling a single solid-state quantum emitter to an array of resonant plasmonic antennas.
    Pfeiffer M; Atkinson P; Rastelli A; Schmidt OG; Giessen H; Lippitz M; Lindfors K
    Sci Rep; 2018 Feb; 8(1):3415. PubMed ID: 29467499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons.
    Bitton O; Gupta SN; Houben L; Kvapil M; Křápek V; Šikola T; Haran G
    Nat Commun; 2020 Jan; 11(1):487. PubMed ID: 31980624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantum transport through a Coulomb blockaded quantum emitter coupled to a plasmonic dimer.
    Goker A; Aksu H
    Phys Chem Chem Phys; 2016 Jan; 18(3):1980-91. PubMed ID: 26686761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter.
    Park KD; May MA; Leng H; Wang J; Kropp JA; Gougousi T; Pelton M; Raschke MB
    Sci Adv; 2019 Jul; 5(7):eaav5931. PubMed ID: 31309142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale quantum plasmon sensing based on strong photon-exciton coupling.
    Qian Z; Ren J; Zhang F; Duan X; Gong Q; Gu Y
    Nanotechnology; 2020 Mar; 31(12):125001. PubMed ID: 31791020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity.
    Brodbeck S; De Liberato S; Amthor M; Klaas M; Kamp M; Worschech L; Schneider C; Höfling S
    Phys Rev Lett; 2017 Jul; 119(2):027401. PubMed ID: 28753330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide.
    Kim NC; Ko MC; Choe SI; Hao ZH; Zhou L; Li JB; Im SJ; Ko YH; Jo CG; Wang QQ
    Nanotechnology; 2016 Nov; 27(46):465703. PubMed ID: 27749280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum dipole emitters in structured environments: a scattering approach: tutorial.
    Bouchet D; Carminati R
    J Opt Soc Am A Opt Image Sci Vis; 2019 Feb; 36(2):186-195. PubMed ID: 30874096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes.
    Gong SH; Kim JH; Ko YH; Rodriguez C; Shin J; Lee YH; Dang le S; Zhang X; Cho YH
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5280-5. PubMed ID: 25870303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatially defined molecular emitters coupled to plasmonic nanoparticle arrays.
    Liu J; Wang W; Wang D; Hu J; Ding W; Schaller RD; Schatz GC; Odom TW
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):5925-5930. PubMed ID: 30850522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A synthetic biological quantum optical system.
    Lishchuk A; Kodali G; Mancini JA; Broadbent M; Darroch B; Mass OA; Nabok A; Dutton PL; Hunter CN; Törmä P; Leggett GJ
    Nanoscale; 2018 Jul; 10(27):13064-13073. PubMed ID: 29956712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dressed states of a quantum emitter strongly coupled to a metal nanoparticle.
    Varguet H; Rousseaux B; Dzsotjan D; Jauslin HR; Guérin S; Colas des Francs G
    Opt Lett; 2016 Oct; 41(19):4480-4483. PubMed ID: 27749860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strong coupling between surface plasmon polaritons and emitters: a review.
    Törmä P; Barnes WL
    Rep Prog Phys; 2015 Jan; 78(1):013901. PubMed ID: 25536670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmon-exciton hybridization in ZnO quantum-well Al nanodisc heterostructures.
    Lawrie BJ; Kim KW; Norton DP; Haglund RF
    Nano Lett; 2012 Dec; 12(12):6152-7. PubMed ID: 23171302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.