These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 31770898)
1. Relaxation in two-dimensional suspensions of rods as driven by Brownian diffusion. Lebovka NI; Vygornitskii NV; Tarasevich YY Phys Rev E; 2019 Oct; 100(4-1):042139. PubMed ID: 31770898 [TBL] [Abstract][Full Text] [Related]
2. Sedimentation of a suspension of rods: Monte Carlo simulation of a continuous two-dimensional problem. Lebovka NI; Tarasevich YY; Bulavin LA; Kovalchuk VI; Vygornitskii NV Phys Rev E; 2019 May; 99(5-1):052135. PubMed ID: 31212574 [TBL] [Abstract][Full Text] [Related]
3. Vertical drying of a suspension of sticks: Monte Carlo simulation for continuous two-dimensional problem. Lebovka NI; Tarasevich YY; Vygornitskii NV Phys Rev E; 2018 Feb; 97(2-1):022136. PubMed ID: 29548252 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo simulation of evaporation-driven self-assembly in suspensions of colloidal rods. Lebovka NI; Vygornitskii NV; Gigiberiya VA; Tarasevich YY Phys Rev E; 2016 Dec; 94(6-1):062803. PubMed ID: 28085421 [TBL] [Abstract][Full Text] [Related]
5. Monolayers of hard rods on planar substrates. I. Equilibrium. Oettel M; Klopotek M; Dixit M; Empting E; Schilling T; Hansen-Goos H J Chem Phys; 2016 Aug; 145(7):074902. PubMed ID: 27544121 [TBL] [Abstract][Full Text] [Related]
6. Translational and rotational dynamics of colloidal rods by direct visualization with confocal microscopy. Mukhija D; Solomon MJ J Colloid Interface Sci; 2007 Oct; 314(1):98-106. PubMed ID: 17560590 [TBL] [Abstract][Full Text] [Related]
7. Modified scaling principle for rotational relaxation in a model for suspensions of rigid rods. Tse YL; Andersen HC J Chem Phys; 2013 Jul; 139(4):044905. PubMed ID: 23902017 [TBL] [Abstract][Full Text] [Related]
8. Monolayers of hard rods on planar substrates. II. Growth. Klopotek M; Hansen-Goos H; Dixit M; Schilling T; Schreiber F; Oettel M J Chem Phys; 2017 Feb; 146(8):084903. PubMed ID: 28249435 [TBL] [Abstract][Full Text] [Related]
9. Brownian dynamics simulations of the self- and collective rotational diffusion coefficients of rigid long thin rods. Tao YG; den Otter WK; Padding JT; Dhont JK; Briels WJ J Chem Phys; 2005 Jun; 122(24):244903. PubMed ID: 16035812 [TBL] [Abstract][Full Text] [Related]
10. Simulations of concentrated suspensions of rigid fibers: relationship between short-time diffusivities and the long-time rotational diffusion. Cobb PD; Butler JE J Chem Phys; 2005 Aug; 123(5):054908. PubMed ID: 16108694 [TBL] [Abstract][Full Text] [Related]
11. Long-time relaxation dynamics in nematic and smectic liquid crystals of soft repulsive colloidal rods. Cywiak D; Gil-Villegas A; Patti A Phys Rev E; 2022 Jan; 105(1-1):014703. PubMed ID: 35193200 [TBL] [Abstract][Full Text] [Related]
12. Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: a comparative study. Patti A; Cuetos A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011403. PubMed ID: 23005413 [TBL] [Abstract][Full Text] [Related]