These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31770914)

  • 1. Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics.
    Olivares F; Zunino L; Soriano MC; Pérez DG
    Phys Rev E; 2019 Oct; 100(4-1):042215. PubMed ID: 31770914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach.
    Zunino L; Soriano MC; Rosso OA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046210. PubMed ID: 23214666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting chaotic with stochastic dynamics via ordinal transition networks.
    Olivares F; Zanin M; Zunino L; Pérez DG
    Chaos; 2020 Jun; 30(6):063101. PubMed ID: 32611124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Handy fluctuation-dissipation relation to approach generic noisy systems and chaotic dynamics.
    Baldovin M; Caprini L; Vulpiani A
    Phys Rev E; 2021 Sep; 104(3):L032101. PubMed ID: 34654124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discriminating chaotic and stochastic dynamics through the permutation spectrum test.
    Kulp CW; Zunino L
    Chaos; 2014 Sep; 24(3):033116. PubMed ID: 25273196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of hyperchaotic, chaotic, and regular signals using single nonlinear node delay-based reservoir computers.
    Wenkack Liedji D; Talla Mbé JH; Kenne G
    Chaos; 2022 Dec; 32(12):123126. PubMed ID: 36587364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sturdy cycles in the chaotic Tribolium castaneum data series.
    Scheuring I; Domokos G
    Theor Popul Biol; 2005 Mar; 67(2):127-39. PubMed ID: 15713325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ordinal pattern-based complexity analysis of high-dimensional chaotic time series.
    Kottlarz I; Parlitz U
    Chaos; 2023 May; 33(5):. PubMed ID: 37133925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regenerating time series from ordinal networks.
    McCullough M; Sakellariou K; Stemler T; Small M
    Chaos; 2017 Mar; 27(3):035814. PubMed ID: 28364757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control.
    Chen D; Zhang R; Sprott JC; Chen H; Ma X
    Chaos; 2012 Jun; 22(2):023130. PubMed ID: 22757537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex Generalized Synchronization and Parameter Identification of Nonidentical Nonlinear Complex Systems.
    Wang S; Wang X; Han B
    PLoS One; 2016; 11(3):e0152099. PubMed ID: 27014879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lyapunov exponent corresponding to enslaved phase dynamics: Estimation from time series.
    Moskalenko OI; Koronovskii AA; Hramov AE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012913. PubMed ID: 26274253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superfamily phenomena and motifs of networks induced from time series.
    Xu X; Zhang J; Small M
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19601-5. PubMed ID: 19064916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting gas-liquid two-phase flow pattern determinism from experimental signals with missing ordinal patterns.
    Du M; Zhang L; Niu X; Grebogi C
    Chaos; 2020 Sep; 30(9):093102. PubMed ID: 33003906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic approach for assessing the predictability of chaotic time series using reservoir computing.
    Khovanov IA
    Chaos; 2021 Aug; 31(8):083105. PubMed ID: 34470249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Q-S (complete or anticipated) synchronization backstepping scheme in a class of discrete-time chaotic (hyperchaotic) systems: a symbolic-numeric computation approach.
    Yan Z
    Chaos; 2006 Mar; 16(1):013119. PubMed ID: 16599750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ordinal patterns in the Duffing oscillator: Analyzing powers of characterization.
    Gunther I; Pattanayak AK; Aragoneses A
    Chaos; 2021 Feb; 31(2):023104. PubMed ID: 33653071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters.
    Lu J; Cao J
    Chaos; 2005 Dec; 15(4):043901. PubMed ID: 16396593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinguishing fingerprints of hyperchaotic and stochastic dynamics in optical chaos from a delayed opto-electronic oscillator.
    Soriano MC; Zunino L; Larger L; Fischer I; Mirasso CR
    Opt Lett; 2011 Jun; 36(12):2212-4. PubMed ID: 21685970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning chaotic systems from noisy data via multi-step optimization and adaptive training.
    Zhang L; Tang S; He G
    Chaos; 2022 Dec; 32(12):123134. PubMed ID: 36587345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.