These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31770918)

  • 1. Mechanisms controlling fluid breakup and reconnection during two-phase flow in porous media.
    Spurin C; Bultreys T; Bijeljic B; Blunt MJ; Krevor S
    Phys Rev E; 2019 Oct; 100(4-1):043115. PubMed ID: 31770918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermittent fluid connectivity during two-phase flow in a heterogeneous carbonate rock.
    Spurin C; Bultreys T; Bijeljic B; Blunt MJ; Krevor S
    Phys Rev E; 2019 Oct; 100(4-1):043103. PubMed ID: 31770929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures.
    Agnaou M; Lasseux D; Ahmadi A
    Phys Rev E; 2017 Oct; 96(4-1):043105. PubMed ID: 29347623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.
    Reynolds CA; Menke H; Andrew M; Blunt MJ; Krevor S
    Proc Natl Acad Sci U S A; 2017 Aug; 114(31):8187-8192. PubMed ID: 28716946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore-scale visualization and characterization of viscous dissipation in porous media.
    Roman S; Soulaine C; Kovscek AR
    J Colloid Interface Sci; 2020 Jan; 558():269-279. PubMed ID: 31593860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic fluid configurations in steady-state two-phase flow in Bentheimer sandstone.
    Gao Y; Raeini AQ; Blunt MJ; Bijeljic B
    Phys Rev E; 2021 Jan; 103(1-1):013110. PubMed ID: 33601546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalization of Darcy's law for Bingham fluids in porous media: from flow-field statistics to the flow-rate regimes.
    Chevalier T; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023011. PubMed ID: 25768601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized Newtonian fluid flow in porous media.
    Bowers CA; Miller CT
    Phys Rev Fluids; 2021 Dec; 6(12):. PubMed ID: 36601019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow.
    Armstrong RT; McClure JE; Berrill MA; Rücker M; Schlüter S; Berg S
    Phys Rev E; 2016 Oct; 94(4-1):043113. PubMed ID: 27841482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of off-diagonal transport coefficients in two-phase flow in porous media.
    Ramakrishnan TS; Goode PA
    J Colloid Interface Sci; 2015 Jul; 449():392-8. PubMed ID: 25748636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and stability of two-potential flows in the porous media.
    Markicevic B; Bijeljic B; Navaz HK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056324. PubMed ID: 22181515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore-scale investigation of viscous coupling effects for two-phase flow in porous media.
    Li H; Pan C; Miller CT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026705. PubMed ID: 16196749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breakage of non-Newtonian character in flow through a porous medium: evidence from numerical simulation.
    Bleyer J; Coussot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063018. PubMed ID: 25019890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaporation Limited Radial Capillary Penetration in Porous Media.
    Liu M; Wu J; Gan Y; Hanaor DA; Chen CQ
    Langmuir; 2016 Sep; 32(38):9899-904. PubMed ID: 27583455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray Microtomography of Intermittency in Multiphase Flow at Steady State Using a Differential Imaging Method.
    Gao Y; Lin Q; Bijeljic B; Blunt MJ
    Water Resour Res; 2017 Dec; 53(12):10274-10292. PubMed ID: 30333671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media.
    Love PJ; Maillet JB; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 1):061302. PubMed ID: 11736175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Darcy's Law without Friction in Active Nematic Rheology.
    Mackay F; Toner J; Morozov A; Marenduzzo D
    Phys Rev Lett; 2020 May; 124(18):187801. PubMed ID: 32441954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new approach to model the spatiotemporal development of biofilm phase in porous media.
    Bozorg A; Sen A; Gates ID
    Environ Microbiol; 2011 Nov; 13(11):3010-23. PubMed ID: 21951321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-phase flow in a chemically active porous medium.
    Darmon A; Benzaquen M; Salez T; Dauchot O
    J Chem Phys; 2014 Dec; 141(24):244704. PubMed ID: 25554172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition from creeping via viscous-inertial to turbulent flow in fixed beds.
    Hlushkou D; Tallarek U
    J Chromatogr A; 2006 Sep; 1126(1-2):70-85. PubMed ID: 16806240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.