These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31770926)

  • 1. Unifying paradigms of quantum refrigeration: Fundamental limits of cooling and associated work costs.
    Clivaz F; Silva R; Haack G; Brask JB; Brunner N; Huber M
    Phys Rev E; 2019 Oct; 100(4-1):042130. PubMed ID: 31770926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unifying Paradigms of Quantum Refrigeration: A Universal and Attainable Bound on Cooling.
    Clivaz F; Silva R; Haack G; Brask JB; Brunner N; Huber M
    Phys Rev Lett; 2019 Oct; 123(17):170605. PubMed ID: 31702237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum heat engines and refrigerators: continuous devices.
    Kosloff R; Levy A
    Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithmic quantum heat engines.
    Köse E; Çakmak S; Gençten A; Kominis IK; Müstecaplıoğlu ÖE
    Phys Rev E; 2019 Jul; 100(1-1):012109. PubMed ID: 31499932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum-enhanced absorption refrigerators.
    Correa LA; Palao JP; Alonso D; Adesso G
    Sci Rep; 2014 Feb; 4():3949. PubMed ID: 24492860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classical emulation of quantum-coherent thermal machines.
    González JO; Palao JP; Alonso D; Correa LA
    Phys Rev E; 2019 Jun; 99(6-1):062102. PubMed ID: 31330638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Coherence and Ergotropy.
    Francica G; Binder FC; Guarnieri G; Mitchison MT; Goold J; Plastina F
    Phys Rev Lett; 2020 Oct; 125(18):180603. PubMed ID: 33196219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The thermodynamic meaning of negative entropy.
    del Rio L; Aberg J; Renner R; Dahlsten O; Vedral V
    Nature; 2011 Jun; 474(7349):61-3. PubMed ID: 21637254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherences and the thermodynamic uncertainty relation: Insights from quantum absorption refrigerators.
    Liu J; Segal D
    Phys Rev E; 2021 Mar; 103(3-1):032138. PubMed ID: 33862758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymptotic bound for heat-bath algorithmic cooling.
    Raeisi S; Mosca M
    Phys Rev Lett; 2015 Mar; 114(10):100404. PubMed ID: 25815911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gaussian Thermal Operations and The Limits of Algorithmic Cooling.
    Serafini A; Lostaglio M; Longden S; Shackerley-Bennett U; Hsieh CY; Adesso G
    Phys Rev Lett; 2020 Jan; 124(1):010602. PubMed ID: 31976683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal analysis on the performance of an irreversible harmonic quantum Brayton refrigeration cycle.
    Lin B; Chen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056117. PubMed ID: 14682856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Imperfect Timekeeping on Quantum Control.
    Xuereb J; Erker P; Meier F; Mitchison MT; Huber M
    Phys Rev Lett; 2023 Oct; 131(16):160204. PubMed ID: 37925703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum coherence, many-body correlations, and non-thermal effects for autonomous thermal machines.
    Latune CL; Sinayskiy I; Petruccione F
    Sci Rep; 2019 Feb; 9(1):3191. PubMed ID: 30816164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum absorption refrigerator with trapped ions.
    Maslennikov G; Ding S; Hablützel R; Gan J; Roulet A; Nimmrichter S; Dai J; Scarani V; Matsukevich D
    Nat Commun; 2019 Jan; 10(1):202. PubMed ID: 30643131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling.
    Tokiwa Y; Piening B; Jeevan HS; Bud'ko SL; Canfield PC; Gegenwart P
    Sci Adv; 2016 Sep; 2(9):e1600835. PubMed ID: 27626073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Realization of Self-Contained Quantum Refrigeration.
    Huang K; Xi C; Long X; Liu H; Fan YA; Wang X; Zheng Y; Feng Y; Nie X; Lu D
    Phys Rev Lett; 2024 May; 132(21):210403. PubMed ID: 38856252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entropy Exchange and Thermodynamic Properties of the Single Ion Cooling Process.
    Miao JG; Wu CW; Wu W; Chen PX
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entanglement enhances cooling in microscopic quantum refrigerators.
    Brunner N; Huber M; Linden N; Popescu S; Silva R; Skrzypczyk P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032115. PubMed ID: 24730798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.