These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Electrorotation of titanium microspheres. Arcenegui JJ; Ramos A; García-Sánchez P; Morgan H Electrophoresis; 2013 Apr; 34(7):979-86. PubMed ID: 23348799 [TBL] [Abstract][Full Text] [Related]
3. Electrorotation of leaky-dielectric and conducting microspheres in asymmetric electrolytes and angular velocity reversal. Miloh T; Nagler J Electrophoresis; 2020 Aug; 41(15):1296-1307. PubMed ID: 32357251 [TBL] [Abstract][Full Text] [Related]
4. Alternating current electrokinetic properties of gold-coated microspheres. García-Sánchez P; Ren Y; Arcenegui JJ; Morgan H; Ramos A Langmuir; 2012 Oct; 28(39):13861-70. PubMed ID: 22931290 [TBL] [Abstract][Full Text] [Related]
5. Modeling the AC Electrokinetic Behavior of Semiconducting Spheres. García-Sánchez P; Flores-Mena JE; Ramos A Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30700028 [TBL] [Abstract][Full Text] [Related]
6. Electrorotation of metallic microspheres. Ren YK; Morganti D; Jiang HY; Ramos A; Morgan H Langmuir; 2011 Mar; 27(6):2128-31. PubMed ID: 21302938 [TBL] [Abstract][Full Text] [Related]
7. Electrorotation of a metal sphere immersed in an electrolyte of finite Debye length. García-Sánchez P; Ramos A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052313. PubMed ID: 26651701 [TBL] [Abstract][Full Text] [Related]
8. Electrorotation of colloidal particles and cells depends on surface charge. Maier H Biophys J; 1997 Sep; 73(3):1617-26. PubMed ID: 9284328 [TBL] [Abstract][Full Text] [Related]
9. Electric polarizability of metallodielectric Janus particles in electrolyte solutions. Behdani B; Wang K; Silvera Batista CA Soft Matter; 2021 Oct; 17(41):9410-9419. PubMed ID: 34608476 [TBL] [Abstract][Full Text] [Related]
10. Impact of the Electric Polarizability on the Transport and Collective Dynamics of Metallodielectric Janus Particles. Behdani B; Lumpkins J; Silvera Batista CA Langmuir; 2023 Jul; 39(26):9025-9034. PubMed ID: 37338966 [TBL] [Abstract][Full Text] [Related]
11. Electro-orientation and electrorotation of metal nanowires. Arcenegui JJ; García-Sánchez P; Morgan H; Ramos A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063018. PubMed ID: 24483568 [TBL] [Abstract][Full Text] [Related]
12. Electrorotation of axolotl embryos. Abou-Ali G; Kaler KV; Paul R; Björklund NK; Gordon R Bioelectromagnetics; 2002 Apr; 23(3):214-23. PubMed ID: 11891751 [TBL] [Abstract][Full Text] [Related]
13. Coupled electrorotation: two proximate microspheres spin in registry with an AC electric field. Simpson GJ; Wilson CF; Gericke KH; Zare RN Chemphyschem; 2002 May; 3(5):416-23. PubMed ID: 12465501 [TBL] [Abstract][Full Text] [Related]
14. Electrical tweezer for highly parallelized electrorotation measurements over a wide frequency bandwidth. Rohani A; Varhue W; Su YH; Swami NS Electrophoresis; 2014 Jul; 35(12-13):1795-802. PubMed ID: 24668830 [TBL] [Abstract][Full Text] [Related]
15. Low frequency electrorotation of fixed red blood cells. Georgieva R; Neu B; Shilov VM; Knippel E; Budde A; Latza R; Donath E; Kiesewetter H; Bäumler H Biophys J; 1998 Apr; 74(4):2114-20. PubMed ID: 9545070 [TBL] [Abstract][Full Text] [Related]
16. Electrokinetics of metal cylinders. Flores-Mena JE; García-Sánchez P; Ramos A Phys Rev E; 2019 Mar; 99(3-1):032603. PubMed ID: 30999434 [TBL] [Abstract][Full Text] [Related]
17. Electrorotation of particle-coated droplets: from fundamentals to applications. Rozynek Z; Banaszak J; Mikkelsen A; Khobaib K; Magdziarz A Soft Matter; 2021 Apr; 17(16):4413-4425. PubMed ID: 33908583 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the distribution of rotational torque on electrorotation chips with 3D electrodes. Bahrieh G; Özgür E; Koyuncuoğlu A; Erdem M; Gündüz U; Külah H Electrophoresis; 2015 Aug; 36(15):1785-94. PubMed ID: 25963845 [TBL] [Abstract][Full Text] [Related]
19. Dielectric properties of alginate beads and bound water relaxation studied by electrorotation. Esch M; Sukhorukov VL; Kürschner M; Zimmermann U Biopolymers; 1999 Sep; 50(3):227-37. PubMed ID: 10397786 [TBL] [Abstract][Full Text] [Related]
20. Changes in the dielectric properties of medaka fish embryos during development, studied by electrorotation. Shirakashi R; Mischke M; Fischer P; Memmel S; Krohne G; Fuhr GR; Zimmermann H; Sukhorukov VL Biochem Biophys Res Commun; 2012 Nov; 428(1):127-31. PubMed ID: 23063978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]