These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31770975)

  • 1. Characterizing stochastic time series with ordinal networks.
    Pessa AAB; Ribeiro HV
    Phys Rev E; 2019 Oct; 100(4-1):042304. PubMed ID: 31770975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping images into ordinal networks.
    Pessa AAB; Ribeiro HV
    Phys Rev E; 2020 Nov; 102(5-1):052312. PubMed ID: 33327134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is human atrial fibrillation stochastic or deterministic?-Insights from missing ordinal patterns and causal entropy-complexity plane analysis.
    Aronis KN; Berger RD; Calkins H; Chrispin J; Marine JE; Spragg DD; Tao S; Tandri H; Ashikaga H
    Chaos; 2018 Jun; 28(6):063130. PubMed ID: 29960392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling the Connectivity of Complex Networks Using Ordinal Transition Methods.
    Almendral JA; Leyva I; Sendiña-Nadal I
    Entropy (Basel); 2023 Jul; 25(7):. PubMed ID: 37510026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regenerating time series from ordinal networks.
    McCullough M; Sakellariou K; Stemler T; Small M
    Chaos; 2017 Mar; 27(3):035814. PubMed ID: 28364757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting chaotic with stochastic dynamics via ordinal transition networks.
    Olivares F; Zanin M; Zunino L; Pérez DG
    Chaos; 2020 Jun; 30(6):063101. PubMed ID: 32611124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing dynamical transitions by statistical complexity measures based on ordinal pattern transition networks.
    Huang M; Sun Z; Donner RV; Zhang J; Guan S; Zou Y
    Chaos; 2021 Mar; 31(3):033127. PubMed ID: 33810737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ordpy: A Python package for data analysis with permutation entropy and ordinal network methods.
    Pessa AAB; Ribeiro HV
    Chaos; 2021 Jun; 31(6):063110. PubMed ID: 34241315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling Exponents of Time Series Data: A Machine Learning Approach.
    Raubitzek S; Corpaci L; Hofer R; Mallinger K
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possibility between earthquake and explosion seismogram differentiation by discrete stochastic non-Markov processes and local Hurst exponent analysis.
    Yulmetyev R; Gafarov F; Hänggi P; Nigmatullin R; Kayumov S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066132. PubMed ID: 11736261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordinal pattern based similarity analysis for EEG recordings.
    Ouyang G; Dang C; Richards DA; Li X
    Clin Neurophysiol; 2010 May; 121(5):694-703. PubMed ID: 20097130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale permutation entropy analysis of laser beam wandering in isotropic turbulence.
    Olivares F; Zunino L; Gulich D; Pérez DG; Rosso OA
    Phys Rev E; 2017 Oct; 96(4-1):042207. PubMed ID: 29347549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiating resting brain states using ordinal symbolic analysis.
    Quintero-Quiroz C; Montesano L; Pons AJ; Torrent MC; García-Ojalvo J; Masoller C
    Chaos; 2018 Oct; 28(10):106307. PubMed ID: 30384619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discriminating chaotic and stochastic time series using permutation entropy and artificial neural networks.
    Boaretto BRR; Budzinski RC; Rossi KL; Prado TL; Lopes SR; Masoller C
    Sci Rep; 2021 Aug; 11(1):15789. PubMed ID: 34349134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating Temporal Correlations in Time Series Using Permutation Entropy, Ordinal Probabilities and Machine Learning.
    Boaretto BRR; Budzinski RC; Rossi KL; Prado TL; Lopes SR; Masoller C
    Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permutation entropy: Influence of amplitude information on time series classification performance.
    Cuesta-Frau D
    Math Biosci Eng; 2019 Jul; 16(6):6842-6857. PubMed ID: 31698591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing Complex Dynamics in the Classical and Semi-Classical Duffing Oscillator Using Ordinal Patterns Analysis.
    Trostel ML; Misplon MZR; Aragoneses A; Pattanayak AK
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing ordinal partition transition networks from multivariate time series.
    Zhang J; Zhou J; Tang M; Guo H; Small M; Zou Y
    Sci Rep; 2017 Aug; 7(1):7795. PubMed ID: 28798326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating topological entropy using ordinal partition networks.
    Sakellariou K; Stemler T; Small M
    Phys Rev E; 2021 Feb; 103(2-1):022214. PubMed ID: 33736019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A generalized permutation entropy for noisy dynamics and random processes.
    Amigó JM; Dale R; Tempesta P
    Chaos; 2021 Jan; 31(1):013115. PubMed ID: 33754785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.