These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31771023)

  • 41. Regularized lattice Boltzmann model for a class of convection-diffusion equations.
    Wang L; Shi B; Chai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043311. PubMed ID: 26565368
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiblock approach for the passive scalar thermal lattice Boltzmann method.
    Huang R; Wu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043303. PubMed ID: 24827361
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lattice Boltzmann model for the correct convection-diffusion equation with divergence-free velocity field.
    Huang R; Wu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033302. PubMed ID: 25871241
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chapman-Enskog expansion for multi-particle collision models.
    Ihle T
    Phys Chem Chem Phys; 2009 Nov; 11(42):9667-76. PubMed ID: 19851544
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-consistent force scheme in the spectral multiple-relaxation-time lattice Boltzmann model.
    Li X; Li Z; Duan W; Shan X
    Phys Rev E; 2024 Jan; 109(1-2):015301. PubMed ID: 38366523
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temperature-scaled collision process for the high-order lattice Boltzmann model.
    Li X; Shi Y; Shan X
    Phys Rev E; 2019 Jul; 100(1-1):013301. PubMed ID: 31499796
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Uniformly accurate machine learning-based hydrodynamic models for kinetic equations.
    Han J; Ma C; Ma Z; E W
    Proc Natl Acad Sci U S A; 2019 Oct; 116(44):21983-21991. PubMed ID: 31619568
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Statistical mechanics of the fluctuating lattice Boltzmann equation.
    Dünweg B; Schiller UD; Ladd AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036704. PubMed ID: 17930358
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Theoretical and numerical analysis of the lattice kinetic scheme for complex-flow simulations.
    Hosseini SA; Darabiha N; Thévenin D
    Phys Rev E; 2019 Feb; 99(2-1):023305. PubMed ID: 30934293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.
    Hejranfar K; Hajihassanpour M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Linear and brute force stability of orthogonal moment multiple-relaxation-time lattice Boltzmann methods applied to homogeneous isotropic turbulence.
    Simonis S; Haussmann M; Kronberg L; Dörfler W; Krause MJ
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200405. PubMed ID: 34455847
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation.
    Ren F; Song B; Sukop MC; Hu H
    Phys Rev E; 2016 Aug; 94(2-1):023311. PubMed ID: 27627416
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diffused bounce-back condition and refill algorithm for the lattice Boltzmann method.
    Krithivasan S; Wahal S; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033313. PubMed ID: 24730973
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lattice-Boltzmann-Langevin simulations of binary mixtures.
    Thampi SP; Pagonabarraga I; Adhikari R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046709. PubMed ID: 22181309
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Shear stress in lattice Boltzmann simulations.
    Krüger T; Varnik F; Raabe D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046704. PubMed ID: 19518377
    [TBL] [Abstract][Full Text] [Related]  

  • 56. From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models.
    Philippi PC; Hegele LA; Dos Santos LO; Surmas R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056702. PubMed ID: 16803069
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Discrete effect on the halfway bounce-back boundary condition of multiple-relaxation-time lattice Boltzmann model for convection-diffusion equations.
    Cui S; Hong N; Shi B; Chai Z
    Phys Rev E; 2016 Apr; 93():043311. PubMed ID: 27176432
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Galilean-invariant algorithm coupling immersed moving boundary conditions and Lees-Edwards boundary conditions.
    Zhou G; Wang L; Wang X; Ge W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066701. PubMed ID: 22304214
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor.
    Thakore V; Hickman JJ
    J Phys Chem C Nanomater Interfaces; 2015 Jan; 119(4):2121-2132. PubMed ID: 25678941
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Revised Chapman-Enskog analysis for a class of forcing schemes in the lattice Boltzmann method.
    Li Q; Zhou P; Yan HJ
    Phys Rev E; 2016 Oct; 94(4-1):043313. PubMed ID: 27841508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.